摘要
对饱和土体的Terzaqhi-Rendulic固结理论,采用稳态势问题(即Laplace方程)的基本解,并将时间变量和空间变量分离,导出了边界元的求解公式,可采用逐步积分求解.以二维问题为例,采用常数边界单元进行离散处理,编制了计算机程序.作为算例,计算了半无限大土体受均布载荷的固结问题,与解析解相比较,说明边界元方法是很有效的,同时该方法也能很方便地推广到解空间土体固结问题.
Following the TerzaqhiRendulic's concretion theory on saturation soilbody,using the fundamental solution to the potential problem(i.e. Laplace equation) and separating the variable of time from that of space,the disperse was progressed by the constant element and a computer program was edited for the twodimensional case.As an example ,the concretion of infinite big soilbody indicated that the method proposed was more valuable than the theoretical answer. The method can be easily further extended to the problem of space soil-body concretion.
出处
《哈尔滨工程大学学报》
EI
CAS
CSCD
2002年第6期39-42,共4页
Journal of Harbin Engineering University
关键词
土体
固结
边界元法
soil-body
concretion
boundary element method.