期刊文献+

混合GA与SA求解非线性约束优化 被引量:10

Hybrid GA and SA for Solving Nonlinear Constrained Optimization Problems
下载PDF
导出
摘要 在非线性约束优化中,处理好约束条件和增强局部搜索能力是解决这类问题的关键.本文在给出问题一般形式的基础上,设计了一个模拟退火和遗传算法结合的算法.它用模拟退火算法来增强局部搜索能力,用线性交叉来处理约束以外的解,将可行解与不可行解用适应值的正负来区分.仿真试验表明,该算法收敛速度快、搜索能力强、稳健性好,本方法是对应用遗传算法求解非线性约束优化问题的又一次深入探索. For solving the problems of nonlinear constrained optimization, it is very important to handle the constraints and enhance the ability of searching in the part space. With an ordinary model given for the problems, an algorithm was designed by combining genetic algorithm (GA) with simulated annealing (SA).It enhances the ability of local searching by using Simulated Annealing, deals with the solutions out of constrains by linear crossing, and differentiates feasible solutions from unfeasible solutions by positive or negative fitness. Simulation results show that convergence is fast,searching ability is strong and stability is good. The algorithms designed is a further step forward in research about genetic algorithm's application in solving nonlinear constrained optimization problems. 
出处 《哈尔滨工程大学学报》 EI CAS CSCD 2002年第6期73-76,共4页 Journal of Harbin Engineering University
关键词 非线性约束优化 遗传算法 模拟退火算法 线性交叉 nonlinear constrained optimization GA SA linear crossing
  • 相关文献

同被引文献54

引证文献10

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部