期刊文献+

求解对流扩散方程的一种新的隐格式 被引量:1

A new kind of Implicit Difference scheme For Diffusion-Convection Equation
下载PDF
导出
摘要 给出了求解对流扩散方程的组合差商算法,构造了一类隐式差分格式,其精度为o(τ2+h2),按网比r=τh恒稳定,并分析了对角占优条件。数值例子验证了理论分析结果的有效性。 A new kind of implicit difference scheme for diffusion-convection equations is proposed.The truncation error of the scheme is of order o(τ2+h2).According to the net proportion r=τh,the implicit difference scheme is always stable and analyses the diagonally dominant codition.Finally,a numerical example shows that the scheme are effectives.
机构地区 贵州大学理学院
出处 《贵州大学学报(自然科学版)》 2004年第4期341-344,共4页 Journal of Guizhou University:Natural Sciences
关键词 对流扩散方程 组合差商算法 稳定性条件 对角占优条件 diffusion-convection equation combined difference quotient stability Condition diagonally dominant codition
  • 相关文献

参考文献3

二级参考文献7

  • 1胡健伟汤怀民,微分方程数值解法.北京:科学出版社,1999:115-117.
  • 2Douglas, J. Jr. and Russell, T. F. , Numerical method for convection-dominated diffusion problem based on combining the method of characteristics with finite element or finite difference procedures [J]. SIAM J. Numer. Anal. ,1982,19:871~885.
  • 3Jerome, J. W., Convection-dominated nonlinear systems: analysis of Douglas-Russell transportdiffusion algorithm based on approximate characteristics and invariant regions[J]. SIAM J. Numer.Anal. ,1998,25:815~836.
  • 4Ronald E. Mickens, A nonstandard finite difference scheme for a nonlinear PDE having diffusive shock wave solution[J]. Mathematics and Computer in Simulation. 2001, 55:549~555
  • 5张强,孙澈.非线性对流扩散问题的差分-流线扩散法[J].计算数学,1998,20(2):213-224. 被引量:33
  • 6程爱杰,赵卫东.对流扩散方程的经济差分格式[J].计算数学,2000,22(3):309-318. 被引量:22
  • 7王同科.一维对流扩散方程CRANK-NICOLSON特征差分格式[J].应用数学,2001,14(4):55-60. 被引量:20

共引文献18

同被引文献6

  • 1李物兰,张大凯.求解对流扩散方程的组合差商算法[J].北方工业大学学报,2005,17(1):26-30. 被引量:1
  • 2ISMAIL H N A,ELBARBARY E M E,SALEM G S E.Res- trictive Taylor's approximation for solving convection-diffusion equation [J].Appl.Math.Comput,2004,147:355 -363.
  • 3SALKUYEH D K.On the finite difference approximation to the convection-liffusion equation[.l].Appl.Math.Comput,2006, 179:79-86.
  • 4SMITH G D.Numerical Solution of Partial Differential E- quations:Finite Difference Methods[M].3rd ed.Oxford:0x- ford University Press,1985.
  • 5张传林擞值方法[M].北京:中国科学文化出版社.香港:香港科教文化出版有限公司.2001.
  • 6明祖芬,张大凯.对流扩散问题的三次样条解法[J].贵州大学学报(自然科学版),2003,20(3):236-246. 被引量:7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部