期刊文献+

融合多传感器信息的移动机器人自定位方法 被引量:7

Mobile robot self-localization based-on multi-sensory information fusion
下载PDF
导出
摘要 提出一种给定环境模型下移动机器人全局自定位算法 ,通过融合声纳传感器和视觉传感器的异质传感信息把具有多模态、鲁棒性强的Markov方法和单模态、高效准确的EKF方法组合应用并加以改进 ,来实现准确和快速的全局定位 ,同时提高位姿跟踪的准确性 .Markov方法中位姿空间的低分辨率离散减小了存储需求 ,声纳感知模型对位姿空间分布进行初始化并提供了全局的位姿假设 ,视觉感知模型实现了位姿分布更新 ,而基于视觉特征的EKF方法则提高了定位的精度 .实验结果验证了本方法的有效性 . A computation method is proposed for global localization which utilizes information from both sonar and vision sensors. The method combines multimodal, robust Markov and unimodal, efficient extended Kalman filter (EKF) localization with significant improvements for global localization and position tracking. In Markov localization, memory requirements are reduced with low-resolution discretization of pose space. The pose space distribution is initialized and pose hypotheses are acquired through sonar sensor model, and sensor update is accomplished through visual sensor model. Then vision-based EKF is utilized for localization precision. Experimental results demonstrate the validity of the approach.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第6期784-788,共5页 Journal of Southeast University:Natural Science Edition
基金 国家重点基础研究发展计划 (973计划 )资助项目(2 0 0 2CB3 12 2 0 0 ) 国家高技术研究发展计划 (863计划 )资助项目 (2 0 0 2AA42 0 110 ) .
关键词 移动机器人 Markov定位 EKF 融合 Kalman filtering Markov processes Sonar Tracking (position)
  • 相关文献

参考文献11

  • 1Borenstein J, Everett H R, Feng L. Navigating mobile robots: systems and techniques [M]. Wellesley, Mass: AK Peters, 1996. 130-217.
  • 2Chenavier F, Crowley J L. Position estimation for a mobile robot using vision and odometry [A]. In: Proc of IEEE International Conf on Robotics and Automation [C]. Nice, France, 1992. 2588-2593.
  • 3Fox D, Burgard W, Thrun S. Markov localization for mobile robots in dynamic environments [J]. Journal of Artificial Intelligence Research, 1999, 11: 391-427.
  • 4Kaelbling L, Cassandra A, Kurien J. Acting under uncertainty: discrete Bayesian models for mobile-robot navigation[A]. In: Proc of IEEE International Conf on Intelligent Robots and Systems [C]. Osaka, Japan, 1996. 963-972.
  • 5Gutmann J S, Brugard W, Fox D. An experimental comparison of localization methods [A]. In: Proc of IEEE International Conf on Intelligent Robots and Systems[C]. Victoria, Canada, 1998. 736-743.
  • 6Crowley J L. World modeling and position estimation for a mobile robot using ultrasonic ranging [A]. In: Proc of IEEE International Conf on Robotics and Automation[C]. Scottsdale, USA, 1989. 674-680.
  • 7Drumheller M. Mobile robot localization using sonar [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, 9(2): 325-332.
  • 8Krotkov E. Mobile robot localization using a single image [A]. In: Proc of IEEE International Conf on Robotics and Automation [C]. Scottsdale, USA, 1989. 978-983.
  • 9Lowe D G. Three-dimensional object recognition from single two-dimensional images[J]. Artificial Intelligence, 1987, 31:355-395.
  • 10Sarkar S, Boyer K L. Integration, inference, and management of spatial information using Bayesian networks: perceptual organization [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(3): 256-273.

同被引文献56

引证文献7

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部