摘要
研究了时滞微分方程解的振动性,其中P(t)、τ(t)非负连续.我们证明了:如果对充分大的,且,则方程(*)每一解振动.该结论改进和推广了许多已知结果.
Consider the delay differential equation x' (t)+P (t)x (τ(t))= 0, whers P (t), τ(t)∈ C ([to,∞), R+ ). We show that every solution of this equation oscillates if p (s)ds≥1/e for sufficiently large t and Many known results are improved and generalized.
出处
《数学研究》
CSCD
1998年第3期290-293,共4页
Journal of Mathematical Study
基金
中南工业大学文理基金
关键词
时滞微分方程
振动性
变系数
连续
已知
证明
推广
结论
改进
delay, differential equations, oscillation, positive solution and negative solution