期刊文献+

多元Besov—Wiener类的平均宽度和最优恢复(英文) 被引量:4

Average Widths and Optimal Recovery of Multivariate Besov-Wiener Classes
全文增补中
导出
摘要 本文得到了Besov-Wiener类的平均σ-K宽度,平均σ-L宽度,最优恢复的弱渐进结果. in this paper, we obtain some weak asymptotic results for average σ-K width, average σ-L width, and optiml recovery of Besov-Wiener classes.
出处 《数学研究》 CSCD 1998年第4期353-361,共9页 Journal of Mathematical Study
关键词 平均宽度 平均σ-K宽度 最优 渐进 average dimension, average width, optimal recovery, Besov-Wiener class
  • 相关文献

参考文献1

  • 1Jiang Yanjie,Liu Yongping. Average widths and optimal recovery of multivariate Besov classes inL p (Rd)[J] 1998,Chinese Science Bulletin(8):638~641

同被引文献10

  • 1LIU YONGPING(Department of Mathematics, Beijing Normal University, Beliing 100875, China.).AVERAGE σ-K WIDTH OF CLASS OF L_p(R^n) IN L_q (R^n)[J].Chinese Annals of Mathematics,Series B,1995,16(3):351-360. 被引量:7
  • 2Li Chun. Infinite dimensional widths of function classes. J Approx Theory, 1992, 69:14-34.
  • 3Fourier J J F, Stewart J. Amalgams of L^P and l^q. Bull Amer Math Soc, 1985, 13:1-21.
  • 4Nikol'skii S M. Approximation of Functions of Several Variables and Imbedding Theorems. New York: Springer-Verlag, 1975.
  • 5Magaril-Il'yaev G G. Average dimension, widths, and optimal recovery of Sobolev classes on the real axis. Math Sbornik, 1991, 182:1635-1656 (In Russian).
  • 6Din Zung. Average e-dimension of functional class BG,p. Mat Zametki, 1980, 28:727-736.
  • 7Traub J F, Wolniakowski H A. A General Theory of Optimal Algorithms. New York: Academic Press, 1980.
  • 8Liu Yongping, Xu Guiqiao. Some extremal properties of multivariate polynomial splines in the metric Lp (R^d). Science in China, 2001, 31B: 307-313.
  • 9Yong-ping Liu, Gui-qiao XuDepartment of Mathematics, Beijing Normal University, Beijing 100875, China Department of Mathematics, Tianjin Normal Univesity, Tianjin 300074. China.The Average Widths and Non-linear Widths of the Classes of Multivariate Functions with Bounded Moduli of Smoothness[J].Acta Mathematicae Applicatae Sinica,2002,18(4):663-674. 被引量:2
  • 10蒋艳杰.各向异性Besov-Wiener类的平均宽度[J].中国科学(A辑),2000,30(2):122-128. 被引量:1

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部