期刊文献+

对一类带聚类特征TSP问题的蚁群算法求解 被引量:22

Solving TSP with Characteristic of Clustering by Ant Colony Algorithm
下载PDF
导出
摘要 蚁群算法是近几年提出的一种新型的模拟进化算法,初步的研究表明该算法具有极强的鲁棒性和发现较好解的能力,但同时也存在收敛速度慢的缺点。针对带聚类特征的TSP问题,提出了一种新型的蚁群算法。该算法利用TSP问题本身所具有的聚类特征,从数据域上将其分解成多个子问题,对每个子问题分别采用蚁群算法并行求解,最后将所有子问题的解按一定规则合并成问题的解。对带聚类特征TSP问题的仿真实验表明该算法的收敛速度得到了极大的提高。 Ant colony algorithm (ACA) is a novel simulated evolutionary algorithm which was proposed in recent years. Preliminary study has shown that the algorithm is very robust and has great capabilities in searching better solution, but at the same time there are some shortcomings such as converging slowly in the algorithm. To tackle traveling salesman problem (TSP) with characteristic of clustering, a new ACA algorithm is proposed. First the TSP problem is divided into several sub-problems by clustering processing, and then all the sub-problems will be solved in parallelization by ACA algorithm, respectively. At last all the solutions of each sub-problem will be merged into the solution of the TSP problem by some rules. Simulated experiment on TSP with characteristic of clustering shows that the convergence rate of the new algorithm has been greatly improved.
出处 《系统仿真学报》 EI CAS CSCD 2004年第12期2683-2686,共4页 Journal of System Simulation
关键词 蚁群算法 聚类 旅行商问题 组合优化问题 局部搜索 ant colony algorithm clustering traveling salesman problem combinatorial optimization problem local search
  • 相关文献

参考文献5

  • 1M Dorigo, V Maniezzo, A Colorni. Positive feedback as a search strategy [R]. Technical Report 91-016, Dipartimento di Elettronica, Politecnico di Milano, IT, 1991.
  • 2M Dorigo, V Maniezzo, A Colorni. The ant system: Optimization by a colony of cooperating agents [J]. IEEE Transactions on Systems, Man, and Cybernetics Part B, 1996, 26(1): 29-41.
  • 3M Dorigo, L M Gambardella. Ant colony system: A cooperative learning approach to the traveling salesman problem [J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 53-66.
  • 4T Stützle. H Hoos. The MAX-MIN ant system and local search for the traveling salesman problem [C]. In T. Baeck, Z. Michalewicz, and X. Yao, editors, Proceedings of IEEE-ICEC-EPS'97, IEEE International Conference on Evolutionary Computation and Evolutiona
  • 5B Bullnheimer, R F Hartl, C Strauss. A new rank-based version of the Ant System: A computational study [J]. Central European Journal for Operations Research and Economics, 1999, 7(1): 25-38.

同被引文献164

引证文献22

二级引证文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部