期刊文献+

Bi_2O_3-Y_2O_3体系中纳米δ-Bi_2O_3相的生成规律研究 被引量:2

Study on preparating process of nanometer Bi_2O_3-Y_2O_3 fast ionic conductor
下载PDF
导出
摘要  以分析纯的Bi(NO3)3·5H2O和Y(NO3)3·6H2O作为原料,经反向滴定法化学共沉淀、干燥和430℃焙烧后获得(75mol%Bi2O3+25mol%Y2O3)纳米复合粉体,粉体平均粒度30nm以下;通过常压反应烧结工艺制备了纳米Bi2O3 Y2O3快离子导体,对烧结过程中高导电相(纳米δ Bi2O3)的形成规律研究结果表明:烧结初期以固溶反应为主,后期以晶粒长大为主,晶粒生长规律符合(D-D0)2=K·t抛物线方程;用模式识别技术对δ Bi2O3相生成的工艺条件进行了优化。 With A.R.Bi(NO3)3&middot5H2O and Y(NO3)3&middot6H2O being raw material, nanometer (75 mol% Bi2O3 + 25 mol% Y2O3) powder was prepared by reversing titration with chemical coprecipitation; its average grain size was below 30 nm. The above powder was pressed to billets, and then sintered at different temperatures by pressureless sintering; By XRD technique, the law of grain grow-up and that of δ-Bi2O3 formation were studied, and the results showed that the initial stage of sintering was primarily solution reaction, and the anaphase was mostly crystal grain growth which followed the rule of paracurve: (D-D0)2 = K&middott. In the end, the above sintering condition was optimized by pattern recognition technique.
出处 《功能材料》 EI CAS CSCD 北大核心 2004年第6期727-729,共3页 Journal of Functional Materials
基金 国家自然科学基金资助项目(20101006)
关键词 纳米氧化铋 共沉淀法 δ-Bi2O3 工艺优化 Grain size and shape Ionic conduction Nanostructured materials Precipitation (chemical) Sintering Titration X ray diffraction analysis Yttrium compounds
  • 相关文献

参考文献9

  • 1Kruidhof H, Seshan K,Lippens Jr B C,et al. [J]. Materials Research Bulletin, 1987,22:1635-1643.
  • 2Bhattacharya A K, Mallick K K. [J]. Solid State Communications, 1994,91(5):357-360.
  • 3Hirano T, Namikawa T.[J].IEEE Transcations on Megnetics, 1999, 35(5):3487-3489.
  • 4Joshi P C, Krupanidi S B.[J]. Journal of Applied Physics, 1992, 72(12): 5827-5833.
  • 5Zeng Y, Lin Y S.[J]. Journal of Materials Science, 2001, 36:1271-1276.
  • 6Mayo M J.[J]. International Materials Reviews, 1996,41(3):85-115.
  • 7Larker H T, Lundberg R.[J]. Journal of the European Ceramic Society,1999,19:2367-2373.
  • 8Nishimura T, Mitomo M, Hirotsuru H, et al.[J].Journal of Materials Science Letters, 1995,14(15):1046.
  • 9Kingery W D, Bowen H K, Uhlman D R. Introduction to Ceramics [C]. 2nd Edited, by John Wiley and Sons Inc, 1967. 458.

同被引文献15

  • 1徐国成,潘玲,关庆丰,邹广田.非晶钛酸铋的晶化过程[J].物理学报,2006,55(6):3080-3085. 被引量:9
  • 2Marschman Steven C. Lumvj D C.[J]. Can J Chem Eng, 1984, 62 (6) :875-879.
  • 3Birgit B, Martin J. [J]. Lesscommon Met, 1989, 156:123-135.
  • 4Medernach John W, Snyder Robert L. [J]. Am Ceram Soc, 1978, 61(11-22): 494-4971.
  • 5Takahashi T, lwahara H, Nagai Y. [J]. Appl Electrochem, 1972, 2:97-104.
  • 6Takahashi T, lwahara H, Arao T.[J]. Appl Electrochem, 1972, 5: 187-195.
  • 7Sammes N M, Tompsett G A, Nafe H, et al. [J]. Journal of the European Ceramic Society, 1999, 19: 1801- 1826.
  • 8Gattow G, Schroder H. [J]. Zeitschrift for Anorganishe und Allgemeine Chemic, 1962, 318: 176-189.
  • 9Gattow G, Schutze D. [J]. Zeitschrift for Anorganishe und Allgemeine Chemie, 1964, 328: 44-68.
  • 10Harwig H A, Gerards A G. [J]. Thermohimica Acta,1979, 28: 121-131.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部