摘要
研究了二个半平面的反平面运动,二个半平面都是剪切弹性模量与材料密度为梯度的非均匀介质,它们之间的界面是具有Coulomb摩擦的单侧界面.当介质的梯度参数按二次幂规律变化时,求得了这一问题的解析解,给出了界面上粘着区与滑移区以及相应的界面剪应力与相对滑移量的分布.通过抛物线脉冲入射下的数值计算发现:界面上的剪应力呈反双峰形分布,正、反滑移区出现在峰值点附近,其范围随界面上施加的外压力σ=fsP∞/μ0的增加而减小,当外压力达到某一数值时,滑移区消失,整个界面将完全粘着在一起.
The anti-plane motion of two half-planes, both are composed of gradient non-homogeneous media and the interface between them is unilateral interface with Coulomb friction, is investigated. When the gradient parameters of media vary by the law of the second power, analytical solutions of the problem are obtained. The stick zone and the slip zone and distributions of the shearing traction and relative slip quantities in these zones are given. Though the numerical calculation to wave field under the incidence of the parabolic wave pulse, it is found that the distributions of the shearing traction at the interface are shown as anti-two peaky ship. The direct and inverse slip zones appear nearby the peak points and their range decrease with the increase the external pressure applied to the interface. When the external pressure reach a certain value, the slip zone disappear, the whole interface will be completely stuck together.
出处
《力学学报》
EI
CSCD
北大核心
2004年第6期695-700,共6页
Chinese Journal of Theoretical and Applied Mechanics
基金
国家自然科学基金项目资助(10272036)~~
关键词
半平面
梯度
反平面
非均匀介质
峰形
界面
解析解
单侧
运动
压力
non-homogeneous medium, two half-planes, unilateral frictional interface, anti-plane motion, analytical solution