期刊文献+

单壁碳纳米管屈曲的原子/连续介质混合模型 被引量:3

BUCKLING OF SINGLE-WALLED CARBON NANOTUBES VIA A HYBRID ATOMIC/CONTINUUM APPROACH
下载PDF
导出
摘要 提供了一种运用原子/连续介质混合(hybrid atomic/continuum,HAC)方法解决纳米力学问题的思路.通过在连续介质力学模型中引入利用分子力学方法获得物性参数,建立了预测单壁碳纳米管临界屈曲参数的HAC模型.结果表明,HAC模型具有与连续介质力学模型可比拟的简洁性,同时可表征纳米管微观结构特征对屈曲参数的影响.计算结果表明,Zigzag纳米管的抗屈曲性能优于Armchair纳米管.基于Tersoff-Brenner作用势的分子动力学结果证实了这一结论. Mechanical behaviors and properties of carbon nanotubes are drawing increasing attention from the mechanics community. Both the 'Bottom Up' approach based on quantum mechanics and the 'Top Down' approach based on continuum mechanics are frequently used to model mechanical behaviors and properties of nanotubes. For some problems, a nanotube can be well described as a continuum solid cylindrical beam or shell. For some other problems, nanotubes show unique properties which cannot be described by continuum methods alone and require atomic or quantum descriptions of the phenomena involved. Buckling of carbon nanotubes has been extensively studied theoretically since such a phenomenon was observed experimentally. However, no analytical solution is so far available to investigate the effect of tube chirality on the buckling behavior of CNTs, although the effect has been shown by some molecular dynamics simulations. Hybrid Atomic/Continuum (HAC) approach has been recognized to be a potential useful tool to describe the effect of atomic details on the macro properties and behaviors of nano-structures and materials. In this paper, buckling of single-walled carbon nanotubes is modeled via a HAC approach. The model shows that zigzag nanotubes are stiffer than armchair tubes. The conclusion is validated by Tersoff-Brenner molecular dynamics simulation.
作者 张田忠
出处 《力学学报》 EI CSCD 北大核心 2004年第6期744-748,共5页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金(10272082 10402019) 上海市博士后科研资助计划 上海市自然科学基金资助项目~~
关键词 连续介质力学 原子 屈曲 HAC 单壁碳纳米管 临界 分子力学 纳米力学 c/c 分子动力学 nanotube, HAC approach, nanomechanics, continuum mechanics, molecular dynamics
  • 相关文献

参考文献18

  • 1Yakobson BI, Brabec C J, Bernholc J. Nanomechanics of carbon tubes: instability beyond linear response. Phys Rev Lett, 1996, 76:2511~2514
  • 2Ru GQ. Effective bending stiffness of carbon nanotubes.Phys Rev B, 2000, 62:9973~9976
  • 3Liu JZ, Zheng QS, Jiang Q. Effect of a rippling mode on resonances of carbon nanotubes. Phys Rev Lett, 2001, 86:4843~4846
  • 4Liu JZ, Zheng QS, Jiang Q. Effect of bending instabilities on the measurements of mechanical properties of multiwalled carbon nanotubes. Phys Rev B, 2003, 67(7): 075414
  • 5郑泉水.Unusual mechanical behavior of carbon nanotubes:a elementary understanding.北京:第66次全国青年科学家论坛报告.2000年11月(Zheng Quanshui.Unusual mechanical behavior of carbon nanotubes: a elementary understanding. Report on the 66th Forum of Chinese Young Scientists. Beijing, Nov, 2002 (in Chinese))
  • 6Postma HWCh, de Jonge M, Yao Z, et al. Electrical transport through carbon nanotube junctions created by mechanical manipulation. Phys Rev B, 2000, 62:10653~10656
  • 7Postma HWCh, Teepen T, Yao Z, et al. Carbon nanotube single-electron transistors at room temperature. Science,2001, 293:76~79
  • 8Poncharal P, Wang ZL, Ugarte D, et al. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science, 1999, 283:1513~1516
  • 9Farajian AA, Yakobson BI, Mizuseki H, et al. Electronic transport through bent carbon nanotubes: Nanoelectromechanical sensors and switches. Phys Rev B, 2003, 67:205423
  • 10Ozaki T, Iwasa Y, Mitani T. Stiffnness of single-walled carbon nanotubes under large stain. Phys Rev Left, 2000, 84:1713~1715

同被引文献41

  • 1倪向贵,王宇,王秀喜.单壁碳纳米管受压屈曲行为的数值模拟[J].Chinese Journal of Chemical Physics,2005,18(1):45-49. 被引量:2
  • 2沈海军.碳、碳化硅及硅纳米管熔化与压缩特性的分子动力学研究[J].材料科学与工程学报,2006,24(5):679-682. 被引量:7
  • 3陈明君,梁迎春,李洪珠,李旦.Molecular dynamics simulation on mechanical property of carbon nanotube torsional deformation[J].Chinese Physics B,2006,15(11):2676-2681. 被引量:2
  • 4RU C Q. Axially compressed buckling of a doublewalled nanotube embedded within an elastic medium [ J]. Journal of the Mechanics and Physics of Solids, 2001, 49: 1265-1279.
  • 5LI C Y, CHOU T W. A structural mechanics approach for the analysis of carbon nanotubes[ J]. International Journal of SoLids and Structures, 2003, 40: 2487-2499.
  • 6LI C Y, CHOU T W. Modeling of elastic buckling of carbon nanotubes by molecular structural mechanics approach[ J]. Mechanics of Materials, 2004, 36 ( 11 ) : 1047-1055.
  • 7LI Y, QIU X M, YANG F, etal. Chirality independence in critical buckling forces of super carbon nanotubes[ J]. Solid State Communications, 2008, 148 : 63-68.
  • 8HU N, NUNOYA K, PAN D, et al. Prediction of buckling characteristics of carbon nanotubes[ J~. International Journal of Solids and Structures, 2007, 44: 6535-6550.
  • 9CHEN X, CAO G X. A structural mechanics study of single-walled carbon nanotubes generalized from atomistic simulation [J]. Nanotechnology, 2006, 17: 1004-1015.
  • 10CORNELL C F, WILLE L T. Elastic properties of single-walled carbon nanotubes, in compression [ J ]. Solid State Communications, 1997, 101 (8) : 555-558.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部