摘要
流形元的数学覆盖与物理网格相对独立,使流形元覆盖系统的形成比有限元单元网格的形成有更大的灵活性和方便性,但在形成流形元覆盖系统时对物理网格也有一定的依赖。笔者讨论了使用规则网格作为数学覆盖时,岩体材料普遍存在的裂隙和岩层界面这两种物理网格对流形元覆盖系统形成的影响,指出数学覆盖的构造要与岩体裂隙和岩层界面相适应,并提出了相应的流形元覆盖系统的形成方法,有利于流形元法应用于大型岩体工程问题。
The mathematical cover has relative independence to physical grid, so the generation of cover system for numerical manifold method is more flexible and convenient than finite element grid, but in some physical grid conditions, it has some dependence to physical grid as same as finite element method. Have discussed the effects of crack and boundary line in rock mass to the generation of cover system for numerical manifold method, point out that mathematical cover must suit with crack and boundary line in rock mass, and put forward corresponding method to form the cover system for numerical manifold method, it is helpful for application of the numerical manifold method in rock mass engineering.
出处
《岩土力学》
EI
CAS
CSCD
北大核心
2004年第12期1933-1936,1941,共5页
Rock and Soil Mechanics
基金
西部交通建设科技项目(2002-318-000-26)