L_1∩L_P(P>1)函数类的Fourier变换的乘子
Multipliers of Fourier Transform of the L_1∩L_P(P>1) Function Class
摘要
该文讨论了L1∩LP(P>1)函数类的Fourier变换的乘子,给出了一个复函数为L1∩LP(P>1)函数和实直线上的相关函数的Fourier变换乘子的充分必要条件.
Multipliers of Fourier transform of L_1∩L_P(P>1) are discussed. A series of necessary and sufficient conditions for a complex-valued function being a multiplier of L_1∩L_P(P>1) function (classes) and related (classes) on a real line are obtained.
出处
《上海大学学报(自然科学版)》
CAS
CSCD
2004年第6期590-594,共5页
Journal of Shanghai University:Natural Science Edition
参考文献9
-
1Verblunsky S. On some classes of Fourier series [J].Proc London Math Soc, 1932, 33:287-327.
-
2Kaczmarz S. On some classes of Fourier series [J]. J London Math Soc, 1933, 8:39-45.
-
3Doss R. On the multiplications of some classes of Fourier transforms [J]. Proc London Math Soc, 1949, 50:169-195.
-
4QuckTS, YapYH. Multipliers from L1(G) to a dipschitz space [J]. J Math Analysis and Appl, 1979,69: 531-539.
-
5Burnham J T, Goldberg R R. Multipliers from L1(G)to a Segal algebra [J]. Bull Inst Math Acad Sinica,1974,2:99-107.
-
6Feichtinger H G. Multipliers from L1 (G) to a homogeneous banach space [J]. J Math Analysis and Appl,1977, 61:341-356.
-
7Poornima S. Multipliers of Segal algebras and related class on the read line [ J ]. Indian J Pure Appl Math,1981, 12:566-579.
-
8Titchmarsh E C. Introduction to the theory of Fourier integrals [M]. Oxford, 1937.45-46.
-
9Bochner S, Chandrasekharan K. Fourier transforms [M]. Princeton, 1949.190.