摘要
The service quality of a workstation depends mainly on its service load, ifnot taking into account all kinds of devices' break-downs. In this article, an optimization modelwith inequality constraints is proposed, which aims to minimize the service load. A noveltransformation of optimization variables is also devised and the constraints are properly combinedso as to make this model into a convex one, whose corresponding Lagrange function and the KKTconditions are established afterwards. The interior-point method for convex optimization ispresented here as an efficient computation tool. Finally, this model is evaluated by a real example,from which conclusions are reached that the interior-point method possesses advantages such asfaster convergeoce and fewer iterations and it is possible to make complicated nonlinearoptimization problems exhibit convexity so as to obtain the optimum.
The service quality of a workstation depends mainly on its service load, ifnot taking into account all kinds of devices' break-downs. In this article, an optimization modelwith inequality constraints is proposed, which aims to minimize the service load. A noveltransformation of optimization variables is also devised and the constraints are properly combinedso as to make this model into a convex one, whose corresponding Lagrange function and the KKTconditions are established afterwards. The interior-point method for convex optimization ispresented here as an efficient computation tool. Finally, this model is evaluated by a real example,from which conclusions are reached that the interior-point method possesses advantages such asfaster convergeoce and fewer iterations and it is possible to make complicated nonlinearoptimization problems exhibit convexity so as to obtain the optimum.