期刊文献+

关于抛物线区域的极值拟共形映照

On extremal quasi-conformal mappings for parabolic regions
下载PDF
导出
摘要 用Ωs表示抛物线区域:Ωs={z=x+iy|y>|x|s,s>0},Ws={z∈Ωs|z≠ib,b>0},在Ws上定义一个由二次微分 (这里0<α<2,k等于0或1,0≤α+k<2)所导出的Teichmuller映照,||(?)(z)||Ωs=+∞.证明了对于Ws,当s>3/1+α+k时,所给的Teichmuller映照关于其边界值是唯一极值的.而当s>1时,所给的Teichmuller映照关于其边界值是极值的,若在(?)(z)中今α=k=0或α=0,k=1则分别得到文[1]、[2]中的两个相关定理,从而本文可以看成是它们的推广. Let Ωs indicate parabolic regions: Ωs = {z=x+iy|y>|x|s,s>0}, Ws indicate regions: Ws ={z∈Ωsz≠ib,b >0}.We define a Teichmuller mapping with quadratic differential (where 0<α<2,k = 0 or 1, 0<α+k<2)in Ws, ||(?)(z)||Ωs=+∞. In this article we have proved that above Teichmuller mapping with given boundary values is unique external for regions W , when s>3/1+α+k', and is extremal when s>1, if let α= k = 0 or α= 0, k = 1 in (?)(z) and we get separately two relative theorems of [1]and[2]. So this article may be regarded as their development.
出处 《西南民族大学学报(自然科学版)》 CAS 2004年第6期707-710,共4页 Journal of Southwest Minzu University(Natural Science Edition)
关键词 极值 拟共形映照 边界值 |X| 次微分 唯一 定理 抛物线 证明 区域 extremal quasi-conformal mapping quadratic different Teichmuller mappings
  • 相关文献

参考文献3

  • 1Reich E.On the structure of family of extremal quasi-conformal mappings of parabolic regions[J].Complex Variables,1986,(5):289-300.
  • 2Reich E,Strebel K.A collection of papers didicated to Lipman Bers[M].New york:Academic Press,1974.375-391.
  • 3Strebel K.On the trajectory structure of quadratic qifferentials,discontinuous groups and Riemann surfaces[J].Annals of Mathematics Studies,1974,

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部