期刊文献+

关于广义Durrmeyer-Bézier算子的L_p逼近 被引量:4

The L_p-Approximation by Generalized Durrmeyer-Bzier Operator
下载PDF
导出
摘要 讨论了广义Durrmeyer Bzier算子Dn,α(f,x),α>0,在Lp[0,1]上对f的逼近度.利用二阶光滑模给出了α>0,p≥1时的结果,另外利用Hardy LittleWood极大函数给出了当α>0,p>1时的一个更加简洁的结果. In the case of α>0,p≥1,the approximation properties of Generalized Durrmeyer-Bzier Operator D_(n,α)(f,x) in L_p[0,1] were studied in this paper by using modulus of smoothness,and in the case α>0,p>0,another more concise result was given by using Hardy-LittleWood maximum function.
作者 杨军 曾晓明
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2004年第6期753-756,共4页 Journal of Xiamen University:Natural Science
基金 国家自然科学基金(19871068) 福建省自然科学基金(A0210004)资助
关键词 Lp逼近 算子 逼近度 极大函数 光滑模 二阶 广义 generalized Durrmeyer-Bzier operator modulus of continuity second order modulus of smoothness Hardy-LittleWood maximum function K-functional
  • 相关文献

参考文献4

  • 1Zeng Xiaoming,ChenWengzhong.On the rate of convergence of the generalized durrmeyer type operators for function of bounded variation[J].J.Approx.Theory,2000,102:1-12.
  • 2Liu Zhixin.Approximation of the Kantorovi-Bézier operators in Lp(0,1)[J].J.Northeastern Math.,1991,7(2):199-205.
  • 3Zeng Xiaoming.On the rate of convergence of two Bernstein-Bézier type operators for bounded variation functions,II[J].J.Approx.Theory,2000,104:330-344.
  • 4Berens H,DeVore R.Quantitative Korovkin theorems for Lp space[A].Approx.TheoryII[C].NewYork:Academic Press,1976.289-298.

同被引文献18

  • 1王绍钦,陈玲菊.Bernstein-Bezier-Kantorovich算子列的逼近阶估计[J].太原师范学院学报(自然科学版),2005,4(2):1-4. 被引量:3
  • 2韩领兄,吴嘎日迪.L_M^(Ba)空间中积分型拟Kantorovic算子逼近正逆定理[J].内蒙古师范大学学报(自然科学汉文版),2006,35(1):35-38. 被引量:7
  • 3吴从忻 王廷辅.奥尔里奇空间及其应用[M].哈尔滨:黑龙江科学技术出版社,1983..
  • 4Zeng xiaoming,Zheng Wengzhong. On the rate of covergenee of the generalized durrmeyer type operators for function of bounded variation [J]. J Approx Theory,2000,102 : 1-12.
  • 5Wu Garidi. On approximation by polynomials in Orlicz spaces [J]. Approximation Theory and its Applications, 1991, 7(3) :97-110.
  • 6ZENG Xiao-ming,CHEN Wen-zong.On the rate of convergence of the generalized Durrmeyer type operators for function of bounded variation[J].J Approx Theory,2000,102:1-12.
  • 7DITZIAN Z,TOTIK V.Module of Smoothness[M].New York:Springer-verlag,1987.
  • 8HEILMANN M.Direct and converse results for operators of Baskakov-Durrmeyer type[J].Approx Theory Appl,1989,5(1):105-127.
  • 9谢敦礼.连续正算子LM^*逼近的阶.杭州大学学报:自然科学版,1981,8(2):142-146.
  • 10Zeng X.M.,Wang T.Rate of convergence of the integral type Lupas-Bézier operators[J].Kyungpook Mathematical Journal,2003,43(4):593-604.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部