期刊文献+

基于优化最小二乘支持向量机的小样本预测研究 被引量:61

Data Prediction with Few Observations Based on Optimized Least Squares Support Vector Machines
下载PDF
导出
摘要 统计学中的预测问题主要是通过对已知数据的分析,找到数据内在的相互依赖关系,从而获得对未知数据的预测能力。该文提出了最小二乘支持向量机参数优化方法———多层动态自适应优化算法,构建了基于最小二乘支持向量机的预测模型,并对Ti 26合金的性能预测进行了研究。结果表明:优化的最小二乘支持向量机具有优秀的小样本数据学习能力和预测能力。 In traditional statistical methods, large samples are needed for accurate function estimation and data prediction. Least squares support vector machines (LS-SVM's) is a machine learning method for function estimation even with small samples. However, inappropriate LS-SVM's algorithmic parameters always bring poor results. A LS-SVM's algorithmic parameters optimization method is suggested which is called multilayer adaptive best-fitting parameters search algorithm. Learning error of samples can be controlled to minimum by the method. And then, a data prediction model based on the parameter-optimized LS-SVM's is approached, and the Ti-26 alloy material performance prediction experiments are analyzed with this model. The results show that the model has excellent learning ability and generalization and can provide more accurate data prediction only with fewer observed samples, as compared with supervised linear feature mapping neural network.
出处 《航空学报》 EI CAS CSCD 北大核心 2004年第6期565-568,共4页 Acta Aeronautica et Astronautica Sinica
基金 国防预研基金(项目编号:98J19.3.2.JB3201) 空军重点型号工程资助项目
关键词 机器学习 支持向量机 神经网络 最小二乘支持向量机 预测 Data processing Feature extraction Forecasting Least squares approximations Neural networks Optimization Titanium alloys Vectors
  • 相关文献

参考文献3

  • 1Vapnik V N. Statistical learning theory [M]. New York: John Wiley, 1998.
  • 2Suykens J A K, Vandewalle J. Least squares support vector machine classifiers [J]. Neural Processing Letters, 1999, 9(3): 293-300.
  • 3Chapelle O , Vapnik V , Bousquet O, et al.Choosing multiple parameters for support vector machines [J]. Machine Learning, 2002, 46:131-159.

同被引文献560

引证文献61

二级引证文献464

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部