期刊文献+

氮化铝与无氧铜低温界面热阻的实验研究 被引量:3

EXPERIMENTAL INVESTIGATION ON THERMAL CONTACT RESISTANCE OF AlN AND OFHC-Cu CONTACT AT LOW TEMPERATURE
下载PDF
导出
摘要 用低温真空实验装置稳态导热法,实验研究了界面温度和接触压力对氮化铝(AlN)与无氧铜(OFHC Cu)间接触界面热阻的影响。在实验温度(90~210K)和压力(0.273~0.985MPa)范围内,AlN/OFHC Cu界面热阻随接触压力的提高而降低,而当界面温度上升时界面热阻由于热载子热运动的强化而降低,温度较高时,界面热阻随压力变化的速率较大。 The influence of interfacial temperature and contact pressure on thermal interfacial resistance is experimentally studied by one-dimensional steady state heat conduction. In range of temperature(90~210 K) and contact pressure (0.273~0.985 MPa), thermal contact resistance of AlN/OFHC-Cu decrease with a increasing contact pressure, and with a increasing contact temperature by the intensive movement of heat carrier. When the temperature of interface is higher , the change rate of thermal contact resistance as contact pressure become more swift.
出处 《真空与低温》 2004年第2期82-84,共3页 Vacuum and Cryogenics
关键词 实验研究 MP 低温 运动 降低 间接 影响 界面热阻 上升 无氧铜 thermal contact resistance AlN phonon thermal conductance
  • 相关文献

参考文献3

  • 1BARRETT JACKSON T, ANIL V VIRKAR, KARREN L MORE, et al. High-thermal-conductivity aluminum nitride ceramics: the effect of thermodynamic kinetic and microstructual factors[J]. J Am Ceram Soc, 1997,80:1 421-1 435.
  • 2SALERNO L J, KITTEL P, SPIVAK A L. Thermal conductance of pressed metallic contacts augmented with indium foil or Apiezon grease at liquid helium temperatures[J]. Cryogenics, 1994,34:649-654.
  • 3POWEL R L, RODER H M, RONGER W M. Low-temperature thermal conductivity of some commercial coppers[J].J Applied Physics, 1957,28: 1 282-1 286.

同被引文献16

  • 1王建,王惠龄,陈进,庄汉锐.直接冷却中氮化铝与无氧铜低温真空接触热导的实验研究[J].低温工程,2006(2):30-34. 被引量:2
  • 2ABRAM R H,MONDELI A A,PARKER R K. Vacuum Electronics for the 21th Century [J].IEEE Microwave Magazine,2001,2(3): 61-67.
  • 3邮电五零六厂《行波管》编写组.行波管[M].北京:人民邮电出版社,1979.
  • 4ROCCI PETER J. A finite element based technique for simulating helix TWT interaction circuit thermal behavior[R]. In-House Report, RL-TR-94-166,1994,10.
  • 5TAKAHASHI M, YAMAGUCHI T, Hashimoto H, et al. Non-brazed helix TWT attained 3KW output at C-band and 600W at Ku-band [J]. IEEE, 1986(CH2381-2/86/0000-01 ) : 167-170.
  • 6FLEURY G, DEVILLE C, KUNTZMANN J-C. Average power limits of brazed helix TWT's[J]. IEEE, 1980(CH 1616-2/80/0000-0806): 806-809.
  • 7候增祺,胡金刚.航天器热控制技术[M].北京:中国科学技术出版社,2007.215-222.
  • 8KRISHNAN V, NOTARDONATO W U, VAIDYANATHAN R. Design, Fabrication and Testing of a Shape Memory Alloy based Cryogenic Thermal Conduction Switch[J]. Smart Mater. Struet, 2004, 20(3):331-339.
  • 9KRISHNAN V B, SINGH J D, WOODRUFF T R, et al. A Shape Memory Alloy Based Cryogenic Thermal Conduction Switch[J]. Advances in Cryogenic Engineering, American Institute of Physics,2004, 50A:26-33.
  • 10尤建刚.空间双驱动微型热开关技术研究[C].西安:第六届全国低温与制冷工程大会,中国制冷学会主办,2003.

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部