期刊文献+

An artificial immune approach for optical image based vision inspection

An artificial immune approach for optical image based vision inspection
原文传递
导出
摘要 This paper presents a novel approach of visual inspection for texture surface defects. The approach uses artificial immune theory in learning the detection of texture defects. In this paper, texture defects are regards as non-self, and normal textures are regarded as self. Defect filters and segmentation thresholds used for defect detection are regarded as antibodies. The clonal selection algorithm stemmed from the natural immune system is employed to learn antibodies. Experimental results on textile image inspection are presented to illustrate the merit and feasibility of the proposed method. This paper presents a novel approach of visual inspection for texture surface defects. The approach uses artificial immune theory in learning the detection of texture defects. In this paper, texture defects are regards as non-self, and normal textures are regarded as self. Defect filters and segmentation thresholds used for defect detection are regarded as antibodies. The clonal selection algorithm stemmed from the natural immune system is employed to learn antibodies. Experimental results on textile image inspection are presented to illustrate the merit and feasibility of the proposed method.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2003年第3期142-144,共3页 中国光学快报(英文版)
基金 This project was partially supported by the National Natural Science Foundation under grant No. 40271094.H.
关键词 CSA in AS for from of that
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部