期刊文献+

INVESTIGATION OF THE MEAN-FLOW SCALING AND TRIPPING EFFECT ON FULLY DEVELOPED TURBULENT PIPE FLOW 被引量:2

INVESTIGATION OF THE MEAN-FLOW SCALING AND TRIPPING EFFECT ON FULLY DEVELOPED TURBULENT PIPE FLOW
原文传递
导出
摘要 Fully developed turbulence measurements in pipe flow were made in theReynolds number range from 10 X 10~3 to 350 X 10~3 with hot-wire anemometer and a Pilot tube.Comparisons were made with the experimental results of previous researchers. The mean velocityprofile and the turbulent intensity in the experiments indicate that for the mean velocity profile,in the fully developed turbulent pipe flow, von Karman's constant κ is a function of the Reynoldsnumber, i. e. κ increases slowly with the Reynolds number. For turbulent pipe flow, the outer limitdepends on whether the Kdrmdn number R^+ is greater or less than 850 in the centerline velocityprofile: a log law exists for 850 < R^+< 1750 in the experiment, and von Karman' s constant κ isshown to be 0. 408. Under the effects of the test trip at the inlet, fully developed turbulence wasobtained in pipe flow at lower Reynolds number when the entrance length (x/D) was larger than 40. Inthe experiment it was also found that turbulence quantities in pipe flow remain independent of theupstream conditions when the trip blockage ratio is higher than 20%, and the comparison with channelwater flow was also performed. Fully developed turbulence measurements in pipe flow were made in theReynolds number range from 10 X 10~3 to 350 X 10~3 with hot-wire anemometer and a Pilot tube.Comparisons were made with the experimental results of previous researchers. The mean velocityprofile and the turbulent intensity in the experiments indicate that for the mean velocity profile,in the fully developed turbulent pipe flow, von Karman's constant κ is a function of the Reynoldsnumber, i. e. κ increases slowly with the Reynolds number. For turbulent pipe flow, the outer limitdepends on whether the Kdrmdn number R^+ is greater or less than 850 in the centerline velocityprofile: a log law exists for 850 < R^+< 1750 in the experiment, and von Karman' s constant κ isshown to be 0. 408. Under the effects of the test trip at the inlet, fully developed turbulence wasobtained in pipe flow at lower Reynolds number when the entrance length (x/D) was larger than 40. Inthe experiment it was also found that turbulence quantities in pipe flow remain independent of theupstream conditions when the trip blockage ratio is higher than 20%, and the comparison with channelwater flow was also performed.
出处 《Journal of Hydrodynamics》 SCIE EI CSCD 2003年第1期14-22,共9页 水动力学研究与进展B辑(英文版)
关键词 turbulent pipe flow velocity profile overlap region tripping effect turbulent pipe flow velocity profile overlap region tripping effect
  • 相关文献

同被引文献4

引证文献2

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部