期刊文献+

EIGENVALUE FUNCTIONS IN EXCITATORY-INHIBITORY NEURONAL NETWORKS 被引量:1

原文传递
导出
摘要 We study the exponential stability of traveling wave solutions of nonlinear systems of integral differential equations arising from nonlinear, nonlocal, synaptically coupled, excitatory-inhibitory neuronal networks. We have proved that exponential stability of traveling waves is equivalent to linear stability. Moreover, if the real parts of nonzero spectrum of an associated linear differential operator have a uniform negative upper bound, namely, max{Reλ: λ∈σ(L),λ≠ 0}≤-D, for some positive constant D, and λ = 0 is an algebraically simple eigenvalue of L, then the linear stability follows, where L is the linear differential operator obtained by linearizing the nonlinear system about its traveling wave and σ(L) denotes the spectrum of L. The main aim of this paper is to construct complex analytic functions (also called eigenvalue or Evans functions) for exploring eigenvalues of linear differential operators to study the exponential stability of traveling waves. The zeros of the eigenvalue functions coincide with the eigenvalues of L.
作者 ZhangLinghai
出处 《Journal of Partial Differential Equations》 2004年第4期329-350,共22页 偏微分方程(英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部