摘要
本文通过选取求和因子构造出和式型三角插值多项式Hn(f,r,x)(r为奇自然数),使其在全实轴上一致地收敛到以2π为周期的连续函数f(x),且Hn(f,r,x)对Cn2π(l≤r)连续函数类的逼近均达到最佳收敛阶.Hn(f,r,x)的饱和阶为1/n(r+1),饱和函数类为f(r)(x)∈Lipml.
In this paper the trigonometric interpolation summation polynomials Hn(f,r,x) (r is an odd natural number) are constructed. If the function f(x)∈C2n, then Hn(f,r,x) converge the function f(x) uniformly on (-∞,∞), and the convergence order is the best if f(x)∈C2n(l≤r); the saturable order of H. (f,r,x) is and the saturated function class is f(r)(x)∈LipM1.
出处
《数学研究》
CSCD
1995年第2期22-27,共6页
Journal of Mathematical Study