期刊文献+

WEAK TRAVELLING WAVE FRONT SOLUTIONS OF GENERALIZED DIFFUSION EQUATIONS WITH REACTION

WEAK TRAVELLING WAVE FRONT SOLUTIONS OFGENERALIZED DIFFUSION EQUATIONS WITH REACTION
原文传递
导出
摘要 The author demonstrate that the two-point boundary value problemhas a solution (A,P(8)), where III is the smallest parameter, under the minimal stringent resstrictions oil f(8), by applying the shooting and regularisation methods. In a classic paper)Kolmogorov et. al. studied in 1937 a problem which can be converted into a special case of theabove problem.The author also use the solutioll (A, p(8)) to construct a weak travelling wave front solutionu(x, t) = y((), (= x -- Ct, C = AN/(N + 1), of the generalized diffusion equation with reactionO { 1 O.IN ̄1 OUI onde L k(u) i ox: &)  ̄ & = g(u),where N > 0, k(8) > 0 a.e. on [0, 1], and f(s):= ac i: g(t)kl/N(t)dt is absolutely continuouson [0, 11, while y(() is increasing and absolutely continuous on (--co, +co) and(k(y(())ly,(OI'), = g(y(()) -- Cy'(f) a.e. on (--co, +co),y( ̄oo)  ̄ 0, y(+oo)  ̄ 1.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 1994年第3期283-292,共10页 数学年刊(B辑英文版)
关键词 Generalized diffusion equation Weak travelling wave front solution Two-point boundary value problem Shooting method Regularization method. 广义分布函数 弱行进波 二点边界值问题 均匀法 二阶准线性抛物型偏微分方程
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部