期刊文献+

EXISTENCE AND UNIQUENESS OF THE ENTROPY SOLUTION TO A NONLINEAR HYPERBOLIC EQUATION 被引量:4

EXISTENCE AND UNIQUENESS OF THE ENTROPY SOLUTION TO A NONLINEAR HYPERBOLIC EQUATION
原文传递
导出
摘要 This work is concerned with the proof of the existence and uniqueness of the entropy weak solution to the following nonlinear hyperbolic equation: at +div(vf(u)) = 0 inIR ̄N × [0, T], with initial data u(., 0) = uo(.) inIR ̄N ) where uo ∈ L∞(IR ̄N ) is a given function, v is a divergence-free bounded functioll of class C1 from IR ̄× x [0, T] to IR ̄N, and f is a function of class C1 from IR toIR. It also gives a result of convergence of a numerical scheme for the discretization of this equation. The authors first show the existence of a 'process' solution (which generalizes the concept of entropy weak solutions, and can be obtained by passing to the limit of solutions of the numerical scheme). The uniqueness of this entropy process solution is then proven; it is also proven that the entropy process solution is in fact an entropy weak solution. Hence the existence and uniqueness of the entropy weak solution are proven.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 1995年第1期1-14,共14页 数学年刊(B辑英文版)
关键词 Nonlinear hyperbolic equation Process solution Existence and uniqueness Convergence of finite volume scheme. 非线性双曲型偏微分方程 存在性 唯一性 过程解
  • 相关文献

同被引文献1

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部