期刊文献+

预测复合材料非线性有效介电系数的割线方法 被引量:1

PREDICTION OF EFFECTIVE NONLINEAR SUSCEPTIBILITY OF COMPOSITES
下载PDF
导出
摘要  提出了预测复合材料非线性电位移和电场强度关系的一种解析方法,该方法基于各向材料的割线介电常数,将非线性问题转化成一系列线性问题来求解。该方法适用于任意各向异性复合材料和组分材料的非线性性质,而常用的Stroud和Hui的模型只适用于各向同性复合材料和组分材料的弱线性。证明了本文方法具有PonteCastaneda提出的变分结构。计算结果表明,当基体非线性较小时,本文模型的预测与Stroud和Hui的模型一致,但当基体非线性系数增大时,本文模型能给出合理的预测结果,而Stroud和Hui的模型则会超出基体和夹杂的性能范围。 An analytical method is proposed to predict the nonlinear susceptibility of general composite materials. The method was based on the secant permittivities of each phase, and a nonlinear problem was transformed into a series of linear problems. The method is applied to any anisotropic composite and the nonlinearity of the constituents, contrary to the Stroud and Hui method, which is valid for isotropic composites and weak nonlinearity. As for the nonlinear mechanical behavior, it is shown that the proposed method is identical to the Ponte Castaneda variational method when the same method is used for the linear comparison composite. Some numerical computations are provided to illustrate the influence of the microstructure on the overall nonlinear relation between the electric displacement and the electric field.
出处 《复合材料学报》 EI CAS CSCD 北大核心 2004年第6期149-154,共6页 Acta Materiae Compositae Sinica
基金 国家杰出青年基金资助(10325210)
关键词 复合材料 介电常数 非线性 割线方法 Dielectric properties Forecasting Nonlinear systems Numerical methods Permittivity
  • 相关文献

参考文献13

  • 1Gao L, Yu K W, Li Z Y, et al.Effective nonlinear optical properties of metal-dielectric composite media with shape distribution[J].Phys Rev E, 2001, 64:036615-036623.
  • 2Li J Y.Exchange coupling in P(VDF-TrFE)copolymer based all-organic composites with giant electrostriction[J].Phys Rev Letters,2003, 90:217601-217604.
  • 3Stroud D, Hui P M.Nonlinear susceptibilities of granular matter[J].Phys Rev B,1988,37:8719-8724.
  • 4Bergman D J.Nonlinear behavior and 1/f noise near a conductivity threshold:Effects of local microgeometry[J].Phys Rev B,1989,39:4598-4609.
  • 5Ponte Castaneda P,DeBotton G,Li G.Effective properties of nonlinear inhomogeneous dielectrics[J].Phys Rev B, 1992,46:4387-4394.
  • 6Stroud D.The effective medium approximations:Some recent developments[J].Superlattices and Microstructures,1998, 3: 567-573.
  • 7Duxbury P M, Beale P D, Leath P M.Size effects of electrical breakdown in quenched random media[J].Phys Rev Lett,1986, 57: 1052-1055.
  • 8Pellegrini Y. Field distributions and effective-medium approximation for weakly nonlinear media[J].Phys Rev B,2000, 61: 9365-9372.
  • 9Hu G K.A method of plasticity for general aligned spheroidal void or fiber-reinforced composites[J].Int J Plasticity, 1996, 12: 439-449.
  • 10Shalaev V M.Optical properties of nanostructured random media[M].Berlin Heidelberg: Springer-Verlag, 2002.

同被引文献18

  • 1Gamett J C M. Colors in metal glasses and in metallic films[J]. Trans Roy Soc London, 1904,203:385-420.
  • 2Gamett J C M. Colors in metal glasses, in metallic films, and in metallic solutions- Ⅱ [ J ]. Trans Roy Soc London, 1906,205:237-288.
  • 3Bruggeman V D A G. Betechnung vershiedener physilcalischer konstanten von heterogenen substanzen[J]. Annalen der Physik, 1935,24: 636-664.
  • 4Doyle W T,Jacobs I S. Effective duster model of dielectric enhancement in metal-insulator composites[J]. Physical Review B, 1990,42(15) :9319-9327.
  • 5Torquato S. Effective electrical conductivity of two-phase disordered composite media[J]. Journal of Applied Physics, 1985,58(10) : 3790-3797.
  • 6Kanaun S K. Dielectric properties of matrix composite materials with high volume concentrations of inclusions ( effective field approach)[J]. International Journal of Engineering Science, 2003,41(12) : 1287-1312.
  • 7Stroud D, Hui P M. Nonlinear susceptibilities of granular matter[J].Physical Review B, 1988,37(15) : 8719-8724.
  • 8Yu K W,Hui P M, Stroud D. Effective dielectric response of nonlinear composites[J]. Physical Review B, 1993,47(21 ) : 14150-14156.
  • 9Pellegrini Y P. Field distributions and effective-medium approximation for weakly nonlinear media[J]. Physical Review B ,2000,61(14) :9365-9372.
  • 10Qiu Y P, Weng G J. A theory of plasticity for porous materials and particle-reinforced composites[J]. Journal of Applied Mechanics, 1992,59 (2) : 261-268.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部