期刊文献+

构造消环的低密度校验码 被引量:3

Construction of Cycle-free LDPC Codes
下载PDF
导出
摘要  LDPC(LowerDensityParityCheck)码是一类可以用非常稀疏的校验矩阵定义的线性分组纠错码.由于LDPC码校验矩阵的规律性,可以用Tanner图表现出来,Tanner图中的环路也会影响到迭代译码的准确性和有效性,尤其是短环.引入一种构造A(n,dv,dc)且dv 3的LDPC码的校验矩阵和消除四环的方法,并且分析和比较了消除4环前后的误码性能的变化. The linear block code is called a binary Low-Density Parity-Check code if whose parity-check matrix is a sparse matrix. For the features of parity-check matrix, a LDPC code can be illustrated by a Tanner graph. Cycles, especially short cycles in the Tanner graph, lead to inefficient decoding and prevent the decoding algorithm from converging to the optimal decoding result. In this paper, a simple algorithm of constructing four-cycle-free regular A(n,d_v,d_c)LDPC codes, d_v3, is introduced. And we analyse the relationship between the performance and the cycle.
出处 《云南民族大学学报(自然科学版)》 CAS 2005年第1期46-47,57,共3页 Journal of Yunnan Minzu University:Natural Sciences Edition
关键词 LDPC码 低密度校验码 误码性能 校验矩阵 迭代译码 纠错码 环路 线性 构造 分组 LDPC codes BP algorithm tanner graph cycle-free girth
  • 相关文献

参考文献6

  • 1GMLLAGER R G. Low- Density Parity- Check Codes[J]. IRE Transactions on Information Theory, 1968,IT(8) :21 - 28.
  • 2MacKay D J C,Neal R M. Near Shannon limit performance of low density parity check nodes[J]. 1997,33(5) :457 - 458.
  • 3Mackay D J C. Good error- correcting codes based on very spars matrices[J]. IEEE Trans on infor theory, 1991,45(2) :399- 431.
  • 4Yu Kou, Shu Lin, Fossorier P C. Low density parity- check codes based on finite geometries: A rediscovery and new[J]. IEEE Tans on Inform Theory, 2001,47(7) :2711 - 2736.
  • 5GALLAGER R G. Low- Density Parity- Check Codes[J]. IRE Transactions on Information Theory, 1968,IT(8) :21 - 28.
  • 6Yu Kou, Shu Lin, Fossorier P C. Low density parity- check codes based on finite geometries: A rediscovery and new[J]. IEEE Tanson Inform Theory, 2001,47(7) :2711 - 2736.

同被引文献13

  • 1[2]Behairy H, Chang S C.Parallel Concatenated Gallagher Codes[J].Electronics Letters, 2000,36(24):2025-2026.
  • 2[4]MacKay D J C, Neal R M. Near Shannon Limit Performance of Low Density Parity Check Codes[J].Electronic Letters,1996,32(18):1645-1646.
  • 3AHMED S, RATNARAJAH T, SELLATHURAI M,et al. Iterative receivers for MIMO - OFDM and their convergence behavior[ J]. IEEE Transactions on Vehicular Technology, 2009,58( 1 ) :461 -468.
  • 4BLOSTEIN S D, LEIB H. Multiple antenna systems: their role and impact in future wireless access [ J ]. IEEE Com- munications Magazine ,2003,41 (7) :94 - 101.
  • 5KANEMARU H, OHTSUKI T. Interference cancellation with diagonal maximum likelihood decoder for space - time/space- frequency block coded OFDM [ C ]//IEEE 59th Vehicular Technology Conference. Chiba, 2004:525 - 529.
  • 6LARSEN M D, SWINDLEHURST A L, SVANTESSON T. Performance bounds for MIMO -OFDM channel estimation [ J]. IEEE Transactions on Signal Processing, 2009,57(5): 1901 - 1916.
  • 7PISHRO - NIK H, FEKRI F. Results on punctured low - density parity - check codes and improved iterative deco- ding techniques [ J ]. IEEE Transactions on Information Theory ,2007,53 (2) :599 - 614.
  • 8NGATCHED T M N, TAKAWIRA F, BOSSERT M. An im- proved decoding algorithm for finite - geometry LDPC codes [ J 1. IEEE Transactions on Communications, 2009,57 (2) : 302 - 306.
  • 9FOSSORIER M P C, MIHALJEVIC M, IMAI H. Reduced complexity iterative decoding of low - density parity check codes based on belief propagation [ J ]. IEEE Transactions on Communications, 1999,47 (5) : 673 - 680.
  • 10CHEN J,FOSSORIER M P C. Near optimum universal belief propagation based decoding of low density parity check codes [ J ]. IEEE Transactions on Communications,2002,50 (3) :406 -414.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部