摘要
LDPC(LowerDensityParityCheck)码是一类可以用非常稀疏的校验矩阵定义的线性分组纠错码.由于LDPC码校验矩阵的规律性,可以用Tanner图表现出来,Tanner图中的环路也会影响到迭代译码的准确性和有效性,尤其是短环.引入一种构造A(n,dv,dc)且dv 3的LDPC码的校验矩阵和消除四环的方法,并且分析和比较了消除4环前后的误码性能的变化.
The linear block code is called a binary Low-Density Parity-Check code if whose parity-check matrix is a sparse matrix. For the features of parity-check matrix, a LDPC code can be illustrated by a Tanner graph. Cycles, especially short cycles in the Tanner graph, lead to inefficient decoding and prevent the decoding algorithm from converging to the optimal decoding result. In this paper, a simple algorithm of constructing four-cycle-free regular A(n,d_v,d_c)LDPC codes, d_v3, is introduced. And we analyse the relationship between the performance and the cycle.
出处
《云南民族大学学报(自然科学版)》
CAS
2005年第1期46-47,57,共3页
Journal of Yunnan Minzu University:Natural Sciences Edition