期刊文献+

线性强化弹塑性裂纹尖端韧带线场 被引量:2

LIGAMENT FIELDS AHEAD OF A CRACK TIP UNDER PIECE-WISE ELASTIC-PLASTIC MODEL
下载PDF
导出
摘要 计及弹性应变 ,引入一代表裂尖区各点弹性变形、塑性变形比例的参量νep,得到平面应变下Ⅰ型裂纹的线性强化弹塑性韧带近似解 ,并导出其应力、应变以及能量密度的表达式。νep作为约束参数进入弹塑性裂纹尖端场 ,其值的变化可引起裂尖能量密度场的明显变化。 A constraint variable of ν ep that represents the ratio of elastic to plastic deformation is introduced. An approximate ligament field of mode Ⅰ plane-strain crack problems under Piece-wise elastic-plastic model is obtained. The investigation emphasis on energy densities other than stresses. It is concluded that elastic energy is still important in elastic-plastic fracture process. There is a non-uniform distribution of the energy density around a crack tip. The decreasing of constraint variable ν ep leads the near tip pattern of energy distributions gradually become uniform and so leads high critical values of J integral.
出处 《机械强度》 CAS CSCD 北大核心 2002年第3期446-449,462,共5页 Journal of Mechanical Strength
基金 内蒙古自治区自然科学基金 (961 0E1 8)的资助~~
关键词 线性强化弹塑性 韧带线场 裂尖约束 能量密度 Piece-wise elastic-plastic model Ligament fields Constraints Energy densities
  • 相关文献

参考文献8

  • 1Rice J R, Rosengren G R. Plane strain deformation near a crack tip in a power-law hardening material. J. Mech. Phys. Solids, 1968,16 (1): 1~12.
  • 2Hutchinson J W. Singular behavior at the end of a tensile crack in a hardening material. J. Mech. Phys. Solids, 1968,16 (1):13~31.
  • 3O'Dowd N P, Shih C F. Family of crack tip fields characterized by a triaxiality parameter: Part Ⅰ Structure of fields. J. Mech., Phys., Solids,1991,39:989 ~ 1 105.
  • 4O'Dowd N P, Shih C F. Family of crack tip fields characterized by a triaxiality parameter: Part Ⅱ Fracture application. J. Mech. Phys. Solids,1992,40;939 ~ 963.
  • 5田常录,文健.裂尖前方塑性区内的局部弹性场[J].固体力学学报,1996,17(1):69-72. 被引量:3
  • 6黄克智.弹塑性断裂力学的一个重要进展[J].力学与实践,1993,15(1):1-7. 被引量:15
  • 7Hancock J W, Cowling M J. Role of state of stress in crack tip failure process. Metal Sci,1980,14:293 ~ 304.
  • 8SUN Jun, DENG Zengjie, LI Zhonghua, TU Mingjing. Constraint intensity in crack tip field and elastic-plastic fracture criterion. Eng. Frac. Mech.,1989,34(2) :413 ~ 418.

二级参考文献5

  • 1Shih C F,ASTM Symposium,1991年
  • 2黄克智,弹塑性断裂力学,1985年
  • 3R. O. Ritchie,A. W. Thompson. On macroscopic and microscopic analyses for crack initiation and crack growth toughness in ductile alloys[J] 1985,Metallurgical Transactions A(1):233~248
  • 4C. F. Shih,M. D. German. Requirements for a one parameter characterization of crack tip fields by the HRR singularity[J] 1981,International Journal of Fracture(1):27~43
  • 5郝天护,张晓堤,黄克智.一种弹性损伤材料的Ⅲ型裂纹解[J].力学学报,1991,23(5):571-580. 被引量:2

共引文献15

同被引文献18

  • 1汤安民,师俊平.几种金属材料宏观断裂形式的试验研究[J].应用力学学报,2004,21(3):142-144. 被引量:27
  • 2Yang S, Chao Y J, Sutton M A. Higher-order asymptotic fields in a power- law hardening material[J]. Engineering Fracture Mechanics, 1993, 45: 1- 20.
  • 3Chao Y J, Yang S, Sutton M A. On the fracture of solids characterized by one or two parameters: theory and practice[J]. Journal of the Mechanics of Physics and Solids, 1994, 42: 629-647.
  • 4Chao Y J, Zhang L. Tables of plane strain crack tip fields: HRR and higher order terms: Me-Report, 97-1 [ R]. Columbia: Department of Mechanical Engineering, University of South Carolina, 1997: 1-101.
  • 5Wallin K. Quantifying Tstrces controlled constraint by the master curve transition temperature To [ J]. Engineering Fracture Mechanics, 2001, 68: 303-328.
  • 6Odette G R, Yamanoto T, Kishimoto H, et al. A master curve analysis af F82H using statistical and constraint loss size adjustments of small specimen data[J]. Journal of Nudcar Materials, 2004, 329-333: 1243-1247.
  • 7Sherry A H, Lidbury D P G, Beardsmore D W. Validation of constraint based structural integrity assessment methods: Final report: Report No. AEAT/RJCB/RD01329400/R003[ R ]. United Kingdom: Atomic Energy Authority Technology, 2001 : 19; 2001 : 20-23.
  • 8Wallin K. Fracture toughness transition curve shape for ferrific structural steels[M]//Teoh S T, Lee K H. Fracture of engineering materials and structures. London: Elsevier Applied Science, 1991: 83-88.
  • 9Vighrig H W, Boehmert J, Dzugan J. Some issues by using the master curve concept[J]. Nuclear Engineering and Design, 2002, 212: 115-124.
  • 10Wallin K. The master curve method: a new concept for brine fracture[J]. International Journal of Materials and Product Technology, 1999, 14: 342- 354.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部