期刊文献+

小波分析在太阳辐射神经网络预测中的应用研究 被引量:9

Study of Application of Wavelet Analysis to Neural Networks for the Forecast of Solar Irradiance
下载PDF
导出
摘要 通过小波变换将太阳辐射数据序列分解到不同的时频域上 ,并对每一频域分量建立一个递归BP网络模型 ;然后用网络模型对各频域分量进行预测 ,将各预测结果进行代数叠加 ,从而得到太阳辐射的预测结果。为体现近期预测结果在精度上的相对重要性 ,在递归BP网络的权阈值修改算法中 ,引入了折扣系数法。最后 ,通过对上海太阳日总辐射的预测实例表明 ,该方法在预测太阳辐射时是可行的。 In this paper, the data series of solar irradiance is mapped into several time-frequency ranges using wavelet transform, and a recurrent BP network is established for each frequency range. The solar irradiance can be predicted with the algebraic sum of the irradiance of each frequency range forecasted by the established network model. The discount coefficient method is adopted in modification of the weights and thresholds of the networks so as to make the closest forecast playing a more important role. An example is presented with the daily forecasted total solar irradiance in Shanghai, and the results indicate that the method is satisfactory for the forecast of solar irradiance.
出处 《东华大学学报(自然科学版)》 CAS CSCD 北大核心 2004年第6期18-22,共5页 Journal of Donghua University(Natural Science)
关键词 太阳辐射预测 小波变换 递归BP网络 折扣系数 forecast of solar irradiance, wavelet transform, recurrent BP network, discount coefficient
  • 相关文献

参考文献4

  • 1Ren MJ, Wright JA. Adaptive diurnal prediction of ambient dry-bulb temperature and solar radiation. HVAC and R Research, 2002, 8(4): 383- 401
  • 2Rioul O, Vetterli M. Wavelets and signal processing. IEEE SP Magazine, 1991, 8(4): 14-38
  • 3Chui CK. An Introduction to Wavelets. New York:Academic Press, 1992:1 - 572
  • 4Meyer Y. Wavelets: Algorithms and Applications.Philadelphia, PA: SIAM Press, 1993: 1-133

同被引文献92

引证文献9

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部