期刊文献+

具有“积分小”系数的中立型方程的振动性

Oscillation in Neutral Differential Equations with “Integrally Small” Coefficients
下载PDF
导出
摘要 讨论中立型方程ddt[y(t) -R(t) y(t -r) ]+P(t)y(t-τ) -Q(t)y(t-σ) =0 ( )其中P ,Q ,R∈C([t0 ,∞ ) ,R+ ) ,r >0 ,τ≥σ >0。在允许 R(t) +∫tt-τ+σQ(u)du - 1可以变号的情况下 ,得到了方程 ( ) Consider the neutral differential equation [y(t)-R(t)y(t-r)]′+P(t)y(t-τ)-Q(t)y(t-σ)=0,where P,Q, R∈C([t 0, ∞), R +), r>0, τ≥σ>0. New sufficient conditions for all solutions to be oscillatory are obtained where R(t)+∫ t t-τ+σ Q(u)du-1 is allowed to oscillate.
机构地区 东华大学理学院
出处 《东华大学学报(自然科学版)》 CAS CSCD 北大核心 2004年第6期28-32,共5页 Journal of Donghua University(Natural Science)
关键词 中立型方程 振动性 积分小系数 neutral equation, oscillation, integrally small coefficient
  • 相关文献

参考文献5

  • 1Yu J S. Neutral differential equations with positive and negative coefficients. Acta Math Siniea, 1991, 34:517 - 523
  • 2Yu J S, Yan J. Oscillation in first order neutral differential equations with ''Integrally small'' coefficients. J Math Anal Appl, 1994, 187:361-370
  • 3Chuan Xi, Ladas G. Oscillation in differential equations with positive and negative coefficients. Canad Math Bull, 1990,33: 442- 450
  • 4Farrall K, Grove E A, Ladas G. Neutral delay differential equations with positive and negative coefficients. Appl Atal,1988, 27: 181-197
  • 5Lalli B S, Zhang B G. Oscillation of first order neutral differential equations. Appl Anal, 1990, 39: 265- 274

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部