期刊文献+

Lipschitz严格伪压缩映象的具误差的迭代逼近 被引量:1

Iterative Approximation with Errors for Lipschitz Strictly Pseudocontractive Mappings
下载PDF
导出
摘要 设 K 是任意实 Banach 空间 E 的非空闭凸子集,T : K → K 是 Lipschitz 严格伪压缩映 象。本文给出一个新的具误差的 Ishikawa 迭代程序强收敛到 T 的唯一不动点,并给出一个涉 及 Lipschitz 强增生映象 T 的非线性方程 Tx = f 的解的迭代逼近。本文结果通过去掉空间 E 的 ∞ 一致光滑或 p? 一致光滑的严格要求、K 的有界性、 lim αn = lim βn = 0 和 αn < ∞(s > s n→∞ n→∞ n=0 1) 的限制而得到。 Suppose that K is a nonempty closed convex subset of an arbitrary real Banach space E. Let T : K → K be a Lipschitz strictly pseudocontractive mapping. In this paper, a new Ishikawa iterative sequence with errors which converges strongly to the unique ?xed point of T is given. The author presents a related result that the new Ishikawa iterative with errors converges to a solution of the nonlinear equation Tx = f when T is Lipschitz strongly accretive mapping. The results are obtained by removing the strict conditions of space E being uniformly smooth or P? uniformly smooth, the ∞ boundedness of K, lim αn = lim βn = 0 and αn < ∞(s >). s n→∞ n→∞ n=0
作者 金茂明
出处 《工程数学学报》 CSCD 北大核心 2004年第6期1025-1028,共4页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金资助项目(69903012) 重庆市教委科学技术研究资助项目(021301 031302).
关键词 严格伪压缩映象 强增生映象 具误差的Ishilkawa迭代 BANACH空间 strictly pseudocontractive mapping strongly accretive mapping Ishikawa iteration with error Banach space
  • 相关文献

参考文献7

  • 1Chidume C E. Iterative approximation of fixed points of Lipschitzian strictly pseudocontractive map pings[J]. Proc Amer Math Soc, 1987;99:283-288
  • 2Deng L, Ding X P. Iterative approximation of Lipschitzian strictly pseudocontractive mappings in uniformly smooth Banach spaces[J]. Nonlinear Analysis, 1995;24:981-987
  • 3Tan K K, Xu H K. Iterative solutions to nonlinear equations of strongly accretive operators in Banach spaces[J]. J Math Anal Appl, 1993;178:9-21
  • 4Xu Y G. Ishikawa, Mann iterative process with errors for nonlinear strongly accretive operator equations[J].J Math Anal Appl, 1998;224:91-101
  • 5Chidume C E. Global iteration schemes for strongly pseudocontractive maps[J]. Proc Amer Math Soc,1998; 126:2641-2649
  • 6Browder F E. Nonlinear mapping of nonexpansive and accretive type in Banach spaces[J]. Bull Amer Math Soc, 1967;73:875-882
  • 7Martin R H. A global existence theorem for autonomous differential equations in Banach spaces[J]. Proc Amer Math Soc, 1970;26:307-314

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部