摘要
研究了简谐外力扰动下,计入PeierlsNabarro力和固体粘性效应,在Neumann边界条件下杆的运动,这个运动可以用SineGordon型方程来模拟.通过有限差分将无穷维的SineGordon型系统近似为有限维系统.当外力的幅值和初始条件中呼吸子的相位发生变化时,系统的解呈现出丰富的空间结构和时间行为,对于一定的外力幅值和相位,系统具有混沌解.发现初始呼吸子的相位也是影响系统运动状态的重要因素.
Harmonically forced bar considering the Peierls Nabarro force and viscous effect of solid with Neumann boundary conditions is simulated with Sine Gordon type equation. Finite difference method is used to approximate the infinite Sine Gordon system to finite dynamic system. The variation of the amplitude of driving force and the phase of initial breather can result in abundant spatial modes and temporal behaviors in the solutions of the Sine Gordon type system. Chaotic effect will take place under certain driving amplitude and initial phase. We found that the phase of initial breather is also an important factor in affecting the motion of this system.
出处
《固体力学学报》
CAS
CSCD
北大核心
2004年第4期404-410,共7页
Chinese Journal of Solid Mechanics
基金
国家自然科学基金(10172063)
山西省青年科学基金(20011004)资助.