期刊文献+

带源项的守恒系统时间分裂算法定常解的收敛性研究

Study on convergence to steady state of the time splitting method for conservation laws with source terms
下载PDF
导出
摘要 时间分裂算法很难获得带源项的守恒系统的定常解,本文中,考虑使用基本的隐式方法积分线性、二次和三次源项,研究了时间分裂算法不能收敛到数值定常态的原因。采用一个刚性参数的方式预测定常态的误差,刚性参数依赖于特定的源项。当源项是解的线性函数时,不存在定常态误差;当源项是解的非线形函数时,发现定常状态的误差是刚性参数的单调增加函数。定常态误差的分析将推广到标准k epsilon双方程湍流模型计算的情况。 It is well known that the time splitting method has difficulty preserving the steady states of conservation laws with source terms. In this paper we estimate the steady state error in terms of a stiffness parameter R, which denotes the ratio of the advection time scale to source term relaxation time scale. We consider linear, quadratic and cubic source terms integrated essentially with an implicit method. We will study why or when the time splitting method does not allow convergence to a numerical steady state. When the source term is a linear function of the solution, there is no steady state error. The steady error is an increasing function of the stiffness parameter if the source term is nonlinear. If the steady state error is large, the computation can not converge to zero machine. The steady state error analysis will be extended to the case of k-epsilon model for high Reynolds number turbulent flow computations.
作者 杜涛 吴子牛
出处 《空气动力学学报》 EI CSCD 北大核心 2004年第4期377-383,388,共8页 Acta Aerodynamica Sinica
关键词 源项 时间分裂算法 守恒 收敛性 定常解 单调 积分 系统时间 非线形 参数 Conservation Convergence of numerical methods Reynolds number Steady flow Stiffness Turbulence
  • 相关文献

参考文献11

  • 1ROE P L. Upwinding differencing schemes for hyperbolic conservation laws with source terms[A]. In: Proc. 1st International Conferance for Hyperbolic Problems[C], 1986: 41-56.
  • 2GREENBERG J M, LE ROUX A-Y. A well-balanced schemefor the numerical processing of source terms in hyperbolic equations[J]. SIAM J. on Numer. Anal. 1996, 33, 1-16.
  • 3MERCI B, et al. Computational treatment of source terms in two-equation turbulence models[J]. AIAA J., 2000, 38: 2085-2093.
  • 4HELZEL C, LEVEQUE R J, WARNECKE G. A modified fractional step method for the accurate approximation of detonation waves[J]. SIAM Journal on Scientific Computing, 2000, 22: 1489-1510.
  • 5TORO E F. Riemann solvers and numerical methods for fluid dynamics: a practical introduction[M]. 2nd, Springer Press, 1999.
  • 6KRUZKOV S N. First order quasi-linear equation in several independent variables[J]. Math. USSR-Sb., 1970, 10: 217-243.
  • 7TANG T, TENG ZH. Error bounds for fractional step methods for conservation laws with source terms[J]. SIAM J. Numer. Anal. 1995, l32: 110-127.
  • 8LEVEQUE R J. Balancing source terms and flux and flux Gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm[J]. Journal of Computational Physics, 1998, 146: 346-365.
  • 9LEVEQUE R J, YEE H C. A study of numerical methods for hyperbolic conservation laws with stiff source terms[J]. Journal of Computational Physics, 1990, 86: 187-210.
  • 10DU T, SHI J, WU Z N. Mixed analytical/numerical method for flow equations with a source term[J]. Computers & Fluids, 2003,32:659-690.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部