期刊文献+

弱频散条件下大气运动的非线性演变过程

NONLINEAR EVOLUTION OF WEAKLY-DISPERSIVE ATMOSPHERIC MOTIONS
下载PDF
导出
摘要 研究非线性过程对大气运动影响的一个常用方法是在一定条件下,将大气运动力学方程化为一些熟知的典型非线性演变方程,再利用数学中已有的结果进行讨论。Long、Redekopp等从地转涡度方程出发,证明了迭加在带状切变气流中的长的Rossby波的演变可以用著名的Kdv方程来描述。 Based on conservative equation of potential vorticity, it is proved that the atmospheric nonlinear evolution in weak frequency-dispersion condition is usually governed by KdV equation and the forms of weak frequency dispersion conditions are discussed. Some previous researches on derivation of KdV equation from different specified atmospheric motions are actually the special cases of the general form in this paper. The KdV equation can be resolved by numerical method. The results present that the initial disturbance in limited domain will develop the isolated wave under one given condition and a series of frequency-dispersing waves under other given conditions.
出处 《气象学报》 CSCD 北大核心 1993年第2期248-252,共5页 Acta Meteorologica Sinica
  • 相关文献

参考文献4

  • 1李麦村,气象学报,1984年,42卷,3期,259页
  • 2刘式达,中国科学.B,1982年,372页
  • 3李麦村,中国科学,1981年,341页
  • 4郭本瑜,科学通报,1978年,23卷,592页

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部