期刊文献+

基于扩展卡尔曼滤波的车道融合跟踪 被引量:3

Lane Fusion Tracking System with Extended Kalman Filter
下载PDF
导出
摘要 车道检测算法的研究是智能车辆自动导航的首要环节。与目前基于视觉的车道检测与跟踪系统不同,本文提出一种基于扩展卡尔曼滤波的车道融合跟踪方法。该方法利用毫米波雷达探测到前方车辆的距离信息,并采用扩展卡尔曼滤波技术和图像处理技术,建立车道跟踪的动态视觉窗口,提取车道边界,并判断前方车辆相对于车道的位置。该方法大大缩减了处理时间,且增强了系统的鲁棒性。 It's a principal link to detect lane robustly and rapidly under a wide variety of conditions for intelligent vehicle navigation,which posed a challenge for current lane detection and tracking systems focusing on vision-based algorithms.The paper proposed a lane fusion tracking method based on extended Kalman filter.The method first made use of the range information detected by millimeter radar,and estimated the obstacle's position of next frame relative to host vehicle with extended Kalman filter.Then,the projective relationship between image and the real world was used to build dynamic visual window for lane tracking,and finally lane boundary markings were extracted using vision technology,and the relative position of vehicle ahead to the lane was determined.As image processing was made only within the window,the time cost was significantly reduced which made it better satisfying realtime request,meanwhile it strengthened the system's robustness for shadowed,broken or interrupted lane.
作者 陈莹 韩崇昭
出处 《公路交通科技》 CAS CSCD 北大核心 2004年第12期114-117,共4页 Journal of Highway and Transportation Research and Development
基金 国家重点基础研究发展规划资助项目(2001CB309403)
关键词 扩展卡尔曼滤波 目标检测 车道跟踪 视觉窗口 Extended Kalman filter Target detecting Lane tracking Visual window
  • 相关文献

参考文献5

  • 1C Kreucher,S Lakshmanan.LANA:A Lane Extraction Algorithm that Uses Frequency Domain Features[J].IEEE Transactions on Robotics and Automation,1999,15(2):343-350.
  • 2K Kluge.Extracting Road Curvature and Orientation from Image Edge Points without Perceptual Grouping Into Features[C].Proceedings Intelligent Vehicle Symposium,1994:109-114.
  • 3D Pomerleau,T Jochem.Rapidly Adapting Machine Vision for Automated Vehicle Steering[J].IEEE Expert [see also IEEE Intelligent Systems],1996,11(2):19-27.
  • 4S Lakshmanan,K Kluge.LOIS:A Real-time Lane Detection Algorithm[C].Proceedings of the 30th Annual Conference on Information Sciences and Systems,1996:1007-1012.
  • 5S Shetty,A T Alouani.A Multisensor Tracking System with an Image-based Maneuver Detector[J].IEEE Transactions on Aerospace and Electronic System,1996,32(1):167-181.

同被引文献23

  • 1皮燕妮,史忠科,黄金.智能车中基于单目视觉的前车检测和跟踪[J].计算机应用,2005,25(1):220-223. 被引量:13
  • 2孙涵,任明武,唐振民,杨静宇.基于机器视觉的智能车辆导航综述[J].公路交通科技,2005,22(5):132-135. 被引量:28
  • 3孔凡天,陈幼平,谢经明,张冈,周祖德.基于多传感器信息融合的移动机器人导航系统[J].计算机工程与应用,2005,41(32):22-24. 被引量:10
  • 4Yang Qing-mei, Sun Jian-min.A data fusion method applied in an autonomous robot[C]//Proceedings of the 27th Chinese Control Conference, Kunming, 2008 : 361-364.
  • 5Chang Hong,Feng Zu-ren.A method of data fusion based on the robust minimum variance filtering[C]//2007 IEEE International Conference on Control and Automation, Guangzhou, 2007: 1760-1764.
  • 6Kim J,Kim Y,Kim S.An accurate localization for mobile robot using extended kalman filter and sensor fusion[C]//2008 International Joint Conference on Neural Networks,2008:2928-2933.
  • 7Canan S,Akkaya R, Ergintav S.Extended Kalman filter sensor fusion and application to mobile robot[C]//Proceedings of the IEEE 12th Signal Processing and Communications Applications Conference, 2004: 771-774.
  • 8Pomsarayouth S, Wongsaisuwan M.Sensor fusion of delay and non-delay signal using Kalman filter with moving covariance[C]// the 2008 IEEE International Conference on Robotics and Biomimetics, Bangkok, Thailand, 2009 : 2045-2049.
  • 9王伟,陈慧,刁增祥.无人驾驶电动游览车底盘集成控制研究[J].汽车工程,2007,29(8):681-685. 被引量:2
  • 10余志生.汽车理论(第3版)[M].北京:机械工业出版社,2001..

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部