期刊文献+

因子链上的最大公因数幂矩阵与最小公倍数幂矩阵

Divisibility of Determinants of Power Matrices on Divisor Chains
下载PDF
导出
摘要 设S={x1,…,xn}是由n个不同正整数组成的集合,ε∈Z+.本文研究了对ε∈Z+定义在任意因子链S上的幂矩阵(S)εn间的整除性.n与det[S]εn和[S]εn的奇异性及它们的行列式det(S) Let S={x_1,…,x_n} be a set of n distinct positive integers,ε∈Z^+.In this paper,I have researched that when ε∈Z^+,singularity of the power matrix (S)~ε_n and the [S]~ε_n defined on any divisor chain S and divisibility of the det(S)~ε_n and the det[S]~ε_n.
作者 何聪
出处 《西华师范大学学报(自然科学版)》 2004年第4期361-363,共3页 Journal of China West Normal University(Natural Sciences)
基金 四川省教育厅重点基金资助项目(2004A197).
关键词 矩阵 最大公因数 因子 行列式 整除性 正整数 最小公倍数 数组成 集合 定义 divisor chain greatest common divisor power matrix least common multiple matrix singularity divisibility
  • 相关文献

参考文献21

  • 1SMITH H J S. On the Value of a Certain Arithmetical Determinant[J]. Proc,London Math. ,Soc. ,1875 -1876,7:208 -212.
  • 2HONG S. On the Bourque-Ligh Conjecture of Least Common Multiple Matrices[J]. J,Algebra,1999,218:216 -228.
  • 3HONG S. Gcd-Closed Sets and Determinants of Matrices Associated with Arithmetical Function[ J]. Acta Arith. ,2002,101:321-332.
  • 4HONG S. Factorization of Matrices Associated with Classes of Arithmetical Functions[ J]. Colloq. Math. ,2003,98:113 -123.
  • 5KORKEE I,HAUKKANEN P. On Meet and Join Matrices Asociatied with Tncidence Function[ J]. Linear Algebra Appl. ,2003,372:127 - 153.
  • 6LINDQVIST P, SEIP K. Note on Greatest Common Divisor Matrices[ J]. Acta Arith. , 1998,84:149 -154.
  • 7MCCARTHY P J. A Generalization of Smith' s Determinant[ J]. Canad. Math. Bull. ,1988,29,109 - 113.
  • 8HONG S F,SUN Q. Determinants of Matrices Associated with Incidence Functions[ J]. Czechslovok Math. S. ,2004,54.
  • 9HONG S F. Notes on Power LCM Matrices[ J]. Acta Arithmetica. 2004,111:165 - 177.
  • 10HONG S. Bounds for Determinants of Matrices Associated with Classes of Arithmetical Functions [ J ]. Linear Algebra Appl.,1998,281:311 - 322.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部