期刊文献+

紧致黎曼对称空间的全测地子流形及其稳定性Ⅱ

TOTALLY GEODESIC SUBMANIFOLDS OF SYMMETRIC SPACES AND THEIR STABILITY II
下载PDF
导出
摘要 本文决定了经典的紧致黎曼对称空间的一大批全测地子流形,并确定了它们在其包围空间中的稳定性. Using the involution theory of Lie groups and the theory of symmetric spaces, the author first determines a large class of totally geodesic submanifolds of the exceptional Riemannian symmetric spaces, and then determine their stability in their ambient spaces.
作者 靳全勤
出处 《数学年刊(A辑)》 CSCD 北大核心 2004年第6期725-734,共10页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10271088)同济大学"振兴计划"资助的项目.
关键词 紧致黎曼对称空间 全测地子流形 李群(李代数)的对合自同构 稳定性 Compact Riemannian symmetric spaces, Totally geodesic subman-ifolds, Involutions of Lie groups (Lie algebras), Stability of a totally geodesic submanifold
  • 相关文献

参考文献5

  • 1Nagano, T., The involutions of compact symmetric spaces [J], Tokyo J. Math.,11(1988), 57-79.
  • 2Ohnita, Y., On the stability of minimal submanifolds in compact symmetric spaces [J],Composito Mathematica, 64(1987), 157-189.
  • 3Sumi, M., On the stability of minimal submanifolds in symmetric spaces [J], Tsukuba J. Math., 19(1995), 27-56.
  • 4Kobayashi, S. & Nomizu, K., Foundations of Differential Geometry, Vol.2 [M], New York, Interscience Publishing, 1969.
  • 5Helgason, S., Differential Geometry, Lie Groups and Symmetric Spaces [M], New York,Academic Press, 1978.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部