期刊文献+

有限域上本原多项式系数的研究

THE COEFFICIENTS OF PRIMITIVE POLYNOMIAL OVER FINITE FIELD
下载PDF
导出
摘要 设Fq表示有q个元素的有限域,q为素数的方幂,f(x)=xn+a1xn-1+…+an-1x+an∈Fq[x].当n≥7时,文[8]指出存在Fq上可预先指定a1,a2的n次本原多项式.本文讨论了剩余的n=5,6两种情形,利用有限域上的两类特征和估计及Cohen筛法(见[4,6]),改进了文[8]中关于本原解个数的下界,并得到当n=5,6时,在特征为奇的有限域上存在可预先指定前两项系数的n次本原多项式. Let f(x) = xn + a1xn-1+…+an-1x + an be a polynomial over Fq, where Fq denotes the finite field of q elements, q an odd prime power. When n ≥ 7, Han has stated that there exist a primitive polynomial of degree n with a1, a2 prescribed. In this paper, the authors discuss the remaining cases when n = 5,6. By making use of two kinds of exponential sums and Cohen's Sieve, the authors improve the lower bound of primitive solutions and prove that there exists a primitive polynomial of degree n = 5,6 with a1,a2 prescribed.
出处 《数学年刊(A辑)》 CSCD 北大核心 2004年第6期775-782,共8页 Chinese Annals of Mathematics
关键词 有限域 指数和 本原多项式 筛法 Finite field, Exponential sum, Primitive root, Hansen-Mullen conjecture
  • 相关文献

参考文献15

  • 1Cohen, S. D., Primitive elements and polynomials with arbitrary traces [J], Discrete Math., 2:83(1990), 1-7.
  • 2Cohen, S. D. & Mills, D., Primitive polynomials with first and second coefficients prescribed [R], Finite Fields and Their Applications, Preprint, April 17, 2002.
  • 3Cohen, S. D., Primitive Elements and Polynomials: Existence Results [A], Lecture Notes in Pure and Applied Mathematics [C], Mullen, G. L. & Shinc, P. J. eds., Dekker.New York, 1992, 43-55.
  • 4Chou, W. S. & Cohen, S. D., Primitive elemnets with zero traces [J], Finite Fields and Their Applications, 7(2001), 125-141.
  • 5Davenport, H., Bases for finite fields [J], J. London Math. Soc., 43(1968), 21-39.
  • 6Fan, S. Q. & Han, W. B., Character sums over Galois rings and primitive polynomial over finite fields [R], Finite Fields and Their Applications, Preprint, 2003.
  • 7Hansen, T. & Mullen, G. L., Primitive polynomials over finite fields [J], Math. of Comp.,59(1992), 639-643.
  • 8Han, W. B., The coefficients of primitive polynomials over finite fields [J], Math. of Comp., 65(1996), 331-340.
  • 9Han, W. B., The distribution of the coefficients of primitive polynomials over finite fields [J], Progress in Computer Science and Applied Logic, 20(2001), 43-57.
  • 10Han, W. B., On two exponential sums and their applications [J], Finite Fields and Their Applications, 3(1997), 115-130.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部