期刊文献+

多孔介质中粘弹性液体广义流动分析 被引量:2

The generalized flow analysis of non-Newtonian visco-elastic fluid flows in porous media
下载PDF
导出
摘要  将分数阶导数引入渗流力学建立了多孔介质中具有松驰特性的非牛顿粘弹性液体的含有分数阶导数的不稳定渗流模型,利用离散逆Laplace变换技巧和广义Mittag Leffler函数研究了多孔介质中非牛顿松弛粘弹性液分数阶流动特征。对任意的分数阶导数得到了精确解,并先求出了长时和短时渐进解,然后用拉普拉斯数值反演Stehfest方法分析无限大地层粘弹性液的流动。结果表明粘弹性流体对分数导数的阶数具有极强的敏感性。 The fractional derivative approach in the seepage mechanics is introduced. A generalized relaxation model of non-Newtonian visco-elastic fluid with the fractional derivatives is built. Exact and asymptotic solutions for some unsteady flows in an infinite and finite reservoir are obtained by using the discrete Laplace transform of the sequential fractional derivatives and generalized Mittag-Leffler function . The pressure transient behavior of non-Newtonian visco-elastic fluid are studied by using the numerical Laplace transform inversion and asymptotic solutions. The dynamical characteristics of visco-elastic fluid are very sensitive to the order of the fractional derivatives.
出处 《水动力学研究与进展(A辑)》 CSCD 北大核心 2004年第6期695-701,共7页 Chinese Journal of Hydrodynamics
基金 国家973项目资助(2002CB211708) 山东省自然科学基金资助项目(Y2003F01)
关键词 粘弹性液体 分数阶导数 多孔介质 精确解 visco-elastic fluid fractional derivatives porous media exact solutions
  • 相关文献

参考文献2

  • 1FRIEDICH C H R. Relaxation and retardation functions of the Maxwell model with fractional derivatives[J].Rheol Acta. 1991,30(2):151-158.
  • 2PODLUBNY I. Fractional Differential Equations[M].San Diego: Academic Press, 1999.

同被引文献13

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部