期刊文献+

随机神经网络发展现状综述 被引量:8

Survey of current progress in random neural network
下载PDF
导出
摘要 随机神经网络 (RNN)在人工神经网络中是一类比较独特、出现较晚的神经网络 ,它的网络结构、学习算法、状态更新规则以及应用等方面都因此具有自身的特点 .作为仿生神经元数学模型 ,随机神经网络在联想记忆、图像处理、组合优化问题上都显示出较强的优势 .在阐述随机神经网络发展现状、网络特性以及广泛应用的同时 ,专门将RNN分别与Hopfield网络、模拟退火算法和Boltzmann机在组合优化问题上的应用进行了分析对比 ,指出RNN是解决旅行商 (TSP) Random neural network (RNN) is a special kind of artificial neural network,which is developed recently and has its own peculiarities on the structure,the learning algorithm,the state-updating rule and the applications.As a biological neural mathematical model,RNN has particular advantages of associative memory,image processing and combinatorial optimization.The current progress,the characteristics and the broad applications are elaborated in this paper.The applications on the combinatorial optimization problems solved by different networks such as Hopfield network,simulated annealing algorithm,Boltzmann machine and RNN are analyzed and contrasted.RNN is pointed out to be an effective approach to travelling saleman problem (TSP).
作者 丛爽 王怡雯
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2004年第6期975-980,985,共7页 Control Theory & Applications
基金 安徽省自然科学基金项目 (0 3 0 42 3 0 1)
关键词 随机神经网络(RNN) HOPFIELD网络 模拟退火算法 BOLTZMANN机 组合优化问题 random neural network(RNN) Hopfield network simulated annealing algorithm Boltzmann machine combinatorial optimization
  • 相关文献

参考文献21

  • 1GELENBE E.Random neural networks with negative and positive signals and product form solution [J]. Neural Computation, 1989,1(14):502-511.
  • 2HODGKIN A L,HUXLEY A F.A quantitative description of ion currents and its applications to conduction and excitation in nerve membranes [J]. J of Physiology (London), 1952,(117):550-544.
  • 3GELENBE E,STAFYLOPATIS A,LIKAS A.Associative memory operation of the random neural network model [C]∥KOHONEN H,eds. Proc of Int Conf Artificial Neural Network. North-Holland:Amsterdam,1991:307-312.
  • 4GELENBE E,KOUBI V,PERKERGIN F.Dynamical random neural network approach to the traveling salesman problem [J]. ELEKTRIK, 1994,2(1):1-10.
  • 5GELENBE E,FOURNEAU J M.Random neural networks with multiple classes of signals [J]. Neual Computation, 1999,11(4):721-731.
  • 6GELENBE E.Learning in the recurrent random neural network [J]. Neural Computation, 1993,5(1):154-164.
  • 7HALICI U. Reward,punishment and expectation in reinforcement learning for the random neural networks [M]∥Workshop on Biologically Inspired Autonomous Systems: Computation,Cognition and Control.Durham,NC,USA:Duke University,1996.
  • 8HALICI U.Reinforcement learning in random neural networks for cascaded decisions [J]. J of Biosystems, 1997,40(1/2):83-91.
  • 9HALICI U.Reinforcement learning with internal expectation for the random neural network [J]. European J of Operational Research, 2000,126(2):288-307.
  • 10GELENBE E,KHALED F.Hussain,Learning in the multiple class random neural network [J]. IEEE Trans on Neural Networks, 2002,13(6):1257-1267.

同被引文献66

引证文献8

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部