期刊文献+

1,8-二巯基芘分子电学特性的理论研究

A Theoretical Study of Electrical Properties of Molecular Junction
下载PDF
导出
摘要 在第一性原理的基础上 ,对 1,8 二巯基芘分子的电学特性进行了理论研究 .采用了 3个Au原子构成的团簇来模拟Au表面 .首先利用密度泛函理论计算了 1,8 二巯基芘分子的电子结构及其和Au表面的相互作用 ,再利用前线轨道理论和微扰理论定量地确定了该分子和Au表面的相互作用能常数 .最后利用弹性散射格林函数法研究了该分子结的伏 安特性 .计算结果表明 ,分子中的硫原子和Au原子形成很强的共价键 .当外加偏压小于 1V时分子结存在电流禁区 ,随着偏压升高 ,分子结的电导出现平台结构 .分子结的电导特性和其电子结构密切相关 ,扩展分子轨道为电荷的迁移提供了通道 。 Based on the first principle, electrical properties of a molecular junction consisting of pyrene-1,8-dithiol molecule and gold surface have been investigated. The cluster of three gold atoms is used to simulate the gold surface. Density functional theory is employed to obtain the electronic structures of the molecule and the extended molecule. Then the frontier orbital theory and the perturbation theory are used to determine the interaction energy between the molecule and the gold surface quantitatively. The elastic Green function method is applied to study the current-voltage properties of the molecular junction. Numerical results show that the sulfur atoms can be chemically absorbed on the gold surface and the bonding between the molecule and gold is mainly covalent-typed. The fermi-energy of the extended molecular system lies between the HOMO and the LUMO and closer to the HOMO of the system. When the external applied bias is lower than 1 V, there is a current gap for the molecular junction. With the increasing of the bias, the conductance of the junction exhibits plateaus. These electrical properties are closely related with the electronic structures of the molecular junction. The extended molecular orbits have great contribution to the charge transport. Localized molecular orbits give little contribution to the current while charge transport is taken place by tunneling.
出处 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2004年第6期697-702,共6页 化学物理学报(英文)
基金 ProjectsupportedbytheNationalNaturalScienceFoundationofChina (10 2 74 0 4 4 )andtheFoundationforOutstandingTeach ersoftheEducationMinistryofChina .
关键词 分子器件 伏安特性 分子电子学 Molecular device, Current-voltage properties, Molecular electronics
  • 相关文献

参考文献13

  • 1[1]Allara D L, Dunbar T D, Weiss P S, Bumm L A, Cygan M T, Tour J M, Reinerth W A, Yao Y, Kozaki M, Jones L. Molecule Electronics: Science and Technology, Edited by Avitam A, Ratner M A, Annals of The New York Academy of Science, New York Academy of Science, New York, 1998, 852: 349
  • 2[4]Reed M A, Zhou C, Muller C J, Burgin T P, Tour J M. Science, 1997, 278: 252
  • 3[5]Chen J, Reed M A, Rawlett A M, Tour J M. Science, 1999, 286: 1550
  • 4[6]Chen J, Wang W, Reed M A, Rawlett A M, Price D W, Tour J M. Appl.Phys.Lett., 2000, 77: 1224
  • 5[7]Tian W, Datta S, Hong S, Reifenberger R, Henderson J I, Kubiak C P. J.Chem.Phys., 1998, 109: 2874
  • 6[8]Ventra M D, Pantelides S T, Lang N D. Phys.Rev.Lett., 2000, 84: 979
  • 7[12]Wang C K, Fu Y, Luo Y Phys. Chem. Chem. Phys., 2001, 3: 5017Becke A D. Phys.Rev.A, 1988, 38: 3098Becke A D. J.Chem.Phys., 1993, 98: 1372Becke A D. J.Chem.Phys., 1993, 98: 5648
  • 8[13]Yaliraki S N, Roitberg A E, Gonzalez C, Mujica V, Rater M A. J.Chem.Phys., 1999, 111: 6997
  • 9[14]Hall L E, Reimers J R, Hush N S, Silverbrook K. J.Chem.Phys., 2000, 112: 1510
  • 10[15]Luo Y, Wang C K, Fu Y. J.Chem.Phys., 2002, 117: 10283

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部