摘要
本文首先分析了题给模型的合理性和实用性。然后将该模型进一步细化,将影响模型的因素分为健康人群、疑似人群、不受控人群、发病人群和退出人群这五类人群占总人数的比例,得到微分方程组模型,并借助Madab中带初始条件(IVPS)的常微分方程组(ODE)的有关命令,根据均方差最小的条件得到了该模型的数值解,使之能更好地拟合现有数据,最终提高了预测精度。
The paper primarily analyses the feasibility and practicality of model,which is further detailed, that is , to divide modelinfluenced factors into healthy group,suspicious group,uncontrolled group and unrelated group in order to obtain Model of differential equation group. And Numerical Solution of it, by means of orders of differential equation group Mat lab with primary conditions, is acquired according to minimized variance of mean,and better complied with current datas and finally promote the predictable accuracy.
出处
《重庆职业技术学院学报》
2005年第1期151-153,共3页
Journal of Chongqing Vocational& Technical Institute
关键词
模型
微分方程
数值率
SARS
曲线拟合
精度
model
differential equation group
numeral solution
SARS
curve fitting
fine-degree.