期刊文献+

Wavelet-Galerkin方法在微分方程中的应用

Wavelet-Galerkin Method for Differential Equation
下载PDF
导出
摘要 运用小波理论,针对某一类变系数微分方程,首次将Littlewood-paley小波引入到变系数微分方程求解中,得到了Littlewood-paky小波ψ的尺度函数(?),构造了L2[0,1]中的正交小波基ψj,kfold,证明了该正交小波基满足方程的初始条件.运用Galerkin方法求出了方程在子空间中的逼近解,得出了变系数微分方程的准确解.拓宽了小波理论的适用范围,并为微分方程的求解问题提供了新的理论空间. Using the theory of the wavelet, it solves the differential equation originally with the Littlewood - Palery wavelet bases. First it gets the scaling function (?) of the Littlewood - Paley wavelet ψ. At the same time, it proves the constructed orthonormal wavelet bases ψj,kfold for L2[0, 1] satisfying the boundary conditions of the equation. Using wavelets in conjunction with the Galerkin method, we look for the approximation uj to the actaul solution u on the subspace Vj. So we can get the actual solution in the end. It not only widens the space of the wavelet, but also provides a new view for solving the differential equation.
出处 《哈尔滨理工大学学报》 CAS 2004年第6期126-128,共3页 Journal of Harbin University of Science and Technology
基金 黑龙江省高校骨干教师创新项目
关键词 变系数微分方程 多尺度分析 正交小波基 准确解 variable coefficient differential equation MRA orthonormal wavelet bases actaul solution
  • 相关文献

参考文献2

  • 1COHEN A, DAUBECHIES I, VIAL P. Waveletson the Interval and Fast Wavelet Transforms[J]. Appl Comput. Harmon Anal, 1993, (1): 54-81.
  • 2GEHRING F W. Introduction to Wavelets Through Linera Algebra[M]. Secauces, NJ, USA: Springer-Verlag New York,Incorporated, 1999. 470-483.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部