摘要
运用小波理论,针对某一类变系数微分方程,首次将Littlewood-paley小波引入到变系数微分方程求解中,得到了Littlewood-paky小波ψ的尺度函数(?),构造了L2[0,1]中的正交小波基ψj,kfold,证明了该正交小波基满足方程的初始条件.运用Galerkin方法求出了方程在子空间中的逼近解,得出了变系数微分方程的准确解.拓宽了小波理论的适用范围,并为微分方程的求解问题提供了新的理论空间.
Using the theory of the wavelet, it solves the differential equation originally with the Littlewood - Palery wavelet bases. First it gets the scaling function (?) of the Littlewood - Paley wavelet ψ. At the same time, it proves the constructed orthonormal wavelet bases ψj,kfold for L2[0, 1] satisfying the boundary conditions of the equation. Using wavelets in conjunction with the Galerkin method, we look for the approximation uj to the actaul solution u on the subspace Vj. So we can get the actual solution in the end. It not only widens the space of the wavelet, but also provides a new view for solving the differential equation.
出处
《哈尔滨理工大学学报》
CAS
2004年第6期126-128,共3页
Journal of Harbin University of Science and Technology
基金
黑龙江省高校骨干教师创新项目
关键词
变系数微分方程
多尺度分析
正交小波基
准确解
variable coefficient differential equation
MRA
orthonormal wavelet bases
actaul solution