期刊文献+

基于快速成形的β-磷酸三钙人工骨结构设计及制造 被引量:6

Structure Design and Fabrication of β-Τricalcium Phosphate Artificial Bone Based on Rapid Prototyping Technique
下载PDF
导出
摘要 提出一种以计算机辅助设计(CAD)和光固化快速成形技术为基础的人工骨间接制造方法.应用CAD准确设计和控制人工骨内部结构,通过光固化快速成形技术制造相应的树脂模具,在模具中填充β-TCP生物陶瓷,经过烘干和热分解去模,获得了与设计相符的β-TCP生物陶瓷人工骨.该方法克服了传统人工骨构造方法中内部微管道结构不可控的缺点,为构造更有利于细胞-组织长入和成活的人工骨内部空间结构开辟了新路.实验证明,从人工骨的结构设计到最终的烧结成型,整个过程均是可控的,而且按照设计准则所构造的生物陶瓷人工骨内部空间结构,有助于促进其活化. An indirect fabrication method for artificial bone is proposed based on CAD and stereolithography rapid prototyping(RP) technique. The internal structure of artificial bone is precisely designed and controlled, and the corresponding epoxy resin mould is manufactured with stereolithography RP technology. The β-tricalcium phosphate materials are filled into the mould and the bioceramic artificial bone with the internal structure consistent with design specification is achieved after drying and pyrolyzing. This method overcomes the defect that internal microchannel structure of traditional artificial bone is uncontrollable, and facilitates constructing a desired spacial structure of artificial bone where the cell/tissue ingrowth and survive are enhanced obviously. The experiments confirm that the whole procedure from structure design to final sintering is under control, and the internal spacial structure promotes the activiation of the artificial bone. .
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2005年第1期13-16,共4页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(50235020).
关键词 Β-磷酸三钙 人工骨 结构设计 快速成形 间接制造 β-tricalcium phosphate artificial bone structure design rapid prototyping indirect fabrication
  • 相关文献

参考文献13

  • 1陈芳,陈晓明,纪国晋,李建华.降解陶瓷中高温粘结剂的结构及溶解性能研究[J].武汉工业大学学报,1995,17(4):143-145. 被引量:3
  • 2Nicholas R W, Lange T A. Granular tricalcium phosphate grafting of cavitary lesions in human bone [J].Clin Orthop Rel Res, 1994,306(9) : 197-203.
  • 3Mooney D J, Cima L G, Langer R, et al. Principles of tissue engineering and reconstruction using polymercell constructs[J]. Mater Res Soc Proe, 1992, 252(6) :345-353.
  • 4Chen C S, Mrksich M, Huang S, et al. Geometric control of cell life and death [J]. Science, 1997,276(5 317): 1 425-1 428.
  • 5Lam C X F, Mo X M, Teoh S H, et al. Scaffold development using 3D printing with a starch-based polymer [J]. Materials Science and Engineering: C, 2002,20(1): 49-56.
  • 6Kalita S J, Bose S, Hosick H L, et al. Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling [J]. Materials Science and Engineering: C, 2003,23(5): 611-620.
  • 7Tan K H, Chua C K, Leong K F, et al. Scaffold development using selective laser sintering of polyethere-therketone-hydroxyapatite biocomposite blends [J].Biomaterials, 2003, 24(18): 3 115-3 123.
  • 8Chu T M G, Orton D G, Hollister S J, et al. Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures [J].Biomaterials, 2002,23(5): 1 283-1 293.
  • 9Nicholas R W, Lange T A. Granular tricalcium phosphate grafting of cavitary lesions in human bone [J]. Clin Orthop Rel Res, 1994,306(9) : 197-203.
  • 10Mooney D J, Cima L G, Langer R, et al. Principles of tissue engineering and reconstruction using polymercell constructs [J]. Mater Res Soc Proc, 1992, 252(6) : 345-353.

共引文献2

同被引文献98

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部