期刊文献+

交错波纹板原表面换热器通道内对流换热的数值研究 被引量:17

Numerical Study on the Characteristics of Convection Heat Transfer in Crossed-Corrugated Primary Surface Exchanger
下载PDF
导出
摘要 对具有正弦波形通道交叉排列的原表面换热器多通道单元内三维稳态层流流动与换热特性进行了分析,利用数值模拟方法探讨了上下波纹板交错角θ、波纹相对节距P/H(波长/波高)及雷诺数Re对流动与换热性能的影响.结果表明:在入口段流动与换热性能的变化较大,此变化在沿主流方向第4个单元后基本消失;在水力直径基本相同的前提下,阻力系数f及平均努谢尔特数Nu随θ的增大而增大;f及Nu在P/H为1 5~3 1的范围内随P/H的增大而增大,在Re大于900及P/H为3 1~4 0时随P/H的增大却开始减小;壁面局部Nu的最大值发生在主流尾部以及与流体出口邻近的2个入口处附近,最小值在上下波纹板的接触点上产生. Investigations on the three-dimensional steady laminar flow and heat transfer characteristics were conducted for the multi-channel with the sine-wave crossed corrugated primary surface. The effects of corrugation angle (θ), the ratio of the wave length P to height H(P/H), and Reynolds numbers (Re) on the flow and heat transfer performance were studied using numerical simulation. The results obtained show that the flow and heat transfer performance changes significantly in the entry region and this change disappears basically after the fourth cell number along the main flow direction. Under the condition of the same hydraulic diameter, Nusselt number (Nu) and friction factor (f) increase with increasing θ. In addition, Nu and f increase with P/H when P/H is between 1.5 and 3.1, and decrease with the increase of P/H when it is between 3.1 and 4.0 with the excess of Re over 900. The maximum of the wall surface local Nu is located near the main flow trailing position and at the entrances of the neighborhood outflows; the minimum of local Nu is obtained at these points where the top plate touches the bottom one.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2005年第1期36-40,共5页 Journal of Xi'an Jiaotong University
基金 国家高技术研究发展计划资助项目 (2 0 0 2AA50 3 0 2 0 ) 西安交通大学创新研究群体资助项目 (2 0 0 1 - 0 6)
关键词 交错波纹板原表面 换热强化 层流流动 多通道模型 Heat transfer Laminar flow Numerical analysis Nusselt number Reynolds number
  • 相关文献

参考文献9

  • 1丰镇平.微型燃气轮机技术进展及应用前景.燃气轮机发电技术,2001,3(1):9-16.
  • 2Utriainen E,Sunden B. Evaluation of the cross corrugation and some other candidate heat transfer surface for microturbine recupemtors[J].ASME Journal of Engineexing for Gas Turbines and Power, 2002, 124 (4):550-560.
  • 3Stasiek J, Collins M W, Ciofalo M, et al. Investigation of flow and heat transfer in corrugated passages: experimental results [J]. Int J Heat Mass Transfer,1996, 39 (1): 149-164.
  • 4Focke W W, Zachariades J, Olivier I. The effect of the corrugation inclination angle on the thermohydraulic performance of plate heat exchangers[J]. Int J Heat Mass Transfer,1985,28 (8)11 469-1 479.
  • 5Ciofalo M, Stasiek J, Collins M W, et al. Investigation of flow and heat transfer in corrugated passages: numerical simulations[J]. Int J Heat Mass Transfer,1996, 39 (1): 165-192.
  • 6Blomerius H, Holsken C, Mitra N K. Numerical investigation of flow field and heat transfer in cross-corrugated ducts[J]. ASME Journal of Heat Transfer,1999, 121 (2):314-321.
  • 7Greiner M, Fischer P F, Tufo M H, et al. Three-dimensional simulations of enhanced heat transfer in a flat passage downstream from a grooved channel[J].ASME Journal of Heat Transfer, 2002, 124 (1) : 169-176.
  • 8Utriainen E,Sunden B. Evaluation of the cross corrugation and some other candidate heat transfer surface for microturbine recupemtors[J]. ASME Journal of Engineexing for Gas Turbines and Power, 2002, 124 (4):550-560.
  • 9Stasiek J, Collins M W, Ciofalo M, et ak Investigation of flow and heat transfer in corrugated passages: experimental results[J]. Int J Heat Mass Transfer,1996, 39 (1): 149-164.

共引文献2

同被引文献111

引证文献17

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部