期刊文献+

基于语义拓扑网的反馈学习技术 被引量:1

A Feedback-learning Mechanism Based on the Semantic Topological Network
下载PDF
导出
摘要 为了从海量数据中快捷有效地获取所需的信息,提出了语义拓扑网的概念以及基于语义拓扑网的反馈学习方法。通过将数据对象的内容特征与语义特征进行有机地结合并构成语义拓扑网。在反馈过程中利用语义拓扑网,不断学习记忆并指导搜索。实验表明,基于语义拓扑网的反馈系统具有良好的学习能力与记忆能力,能有效地提高检索系统的性能。 In order to accurately and quickly gain useful information and knowledge from huge amount of digital objects, relevance feedback has been put on many efforts. In this paper, a new concept is proposed, which is named semantic topological network where digital objects' contents features and semantic features are combined via classification learning. And a feedback-learning mechanism based on semantic topological network is discussed. The experimental results show that the information retrieval system with the feedback-learning mechanism achieves high accuracy and effectiveness on real-word text collections.
出处 《计算机工程》 EI CAS CSCD 北大核心 2005年第1期6-8,共3页 Computer Engineering
基金 国家技术创新计划资助项目
关键词 相关反馈 语义拓扑网 检索系统 Relevant feedback Semantic topological network IR system
  • 相关文献

参考文献4

  • 1Hall H, Weiderman N. The Evaluation Problem in Relevance Feedback. Report No. ISR 12 to the National Science Foundation fromDepartment of Computer Science, Cornell University, 1967
  • 2Vasconcelos N, Lippman A. Bayesian Representations and Learning Mechanisms for Content Based Image Retrieval. In: SPIE Storage andRetrieval for Media Databases. SanJose, CA, 2000
  • 3苏中,张宏江,马少平.基于贝叶斯分类器的图像检索相关反馈算法[J].软件学报,2002,13(10):2001-2006. 被引量:21
  • 4Lu Ye, Hu Chunhui. A Unified Framework for Semantics and Feature Based Relevance Feedback in Image Retrieval Systems. In: Proc. ACMMM2000, 2000:31-38

二级参考文献9

  • 1Aalbersberg, I.J. Incremental relevance feedback. In: Belkin, N.J., ed. Pr oceedings of the 15th Annual International ACM SIGIR Conference on Research and Development in Information retrieval. Copenhagen: ACM Press, 1992. 11~22.
  • 2Harman, D. Relevance feedback revisited. In: Belkin, N.J., ed. Proceedings of the 15th Annual International ACM SIGIR Conference on Research and Developme nt in Information Retrieval. Copenhagen: ACM Press, 1992. 1~10.
  • 3Cox, I.J., Minka, T.P., Papathomas, T.V., et al. The Bayesian image retrie val system, PicHunter: theory, implementation, and psychophysical experiments. I EEE Transactions on Image Processing, 2000,9(1):20~37.
  • 4Rui, Y., Huang, T.S. Relevance feedback: a power tool for interactive cont ent-based image retrieval. IEEE Circuits and Systems for Video Technology, 1999, 8(5):644~655.
  • 5Vasconcelos, N., Lippman, A. Learning from user feedback in image retrieva l systems. In: Proceedings of the NIPS'99. 1999. http://www.media.mit.edu/people /nuno/publications.html.
  • 6Su, Z., Zhang, H., Ma, S. Relevant feedback using a Bayesian classifier in content-based image retrieval. In: Yeung, M.M., et al, eds. Proceedings of the SPIE Storage and Retrieval for Media Databases, Vol 4315. San Jose: SPIE Press, 2001. 97~106.
  • 7Su, Z., Zhang, H., Ma, S. Using Bayesian classifier in relevant feedback o f image retrieval. In: Titsworth, M., ed. Proceedings of the 12th IEEE Internati onal Conference on Tools with Artificial Intelligence (IEEE ICTAI 2000). Vancouv er: IEEE CS Press, 2000. 258~261.
  • 8Rui, Y., Huang, T.S. A novel relevance feedback technique in image retriev al. In: Buford, J., ed. Proceedings of the 7th ACM International Conference (par t 2) on Multimedia (Part 2). New York, NY: ACM Press, 1999. 67~70.
  • 9Duda, R.O., Hart, P.E. Pattern Classification and Scene Analysis. New York : John Wiley & Sons, 1973.

共引文献20

同被引文献35

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部