期刊文献+

基于数据挖掘的电网高峰负荷预测系统 被引量:3

Peak Load Forecasting System Based on Data Mining
下载PDF
导出
摘要 分析电网高峰负荷运行规律,以数据挖掘为核心技术,搭建数据仓库平台,在此基础上给出一种混合策略的神经网络的高峰负荷预测系统,该系统将模糊聚类、L-M神经网络等综合技术融合一体,可以从海量负荷数据中挖掘出有用知识为电网高峰负荷预测服务。 This paper analyzes running law of peak load in power system. By the key technology of data mining, the platform of data warehouse is structured, and a system of mixing optimizing algorithm of neural network for peak load forecasting is developed. There is the synthetic technology of fuzzy cluster and L-M neural network together in this system. Excavating the useful knowledge from magnanimity data can offer the effective and accurate predicting information for the peak load.
出处 《计算机工程》 EI CAS CSCD 北大核心 2005年第1期9-11,共3页 Computer Engineering
基金 国家自然科学基金资助项目(59477010)
关键词 数据挖掘 高峰负荷预测 模糊聚类 神经网络 Data mining Peak load forecasting Fuzzy cluster Neural network
  • 相关文献

参考文献3

  • 1HanJiawei MichelineKamber.数据挖掘概念与技术[M].北京:机械工业出版社,2001.152-160.
  • 2赵弘,周瑞祥,林廷圻.基于Levenberg-Marquardt算法的神经网络监督控制[J].西安交通大学学报,2002,36(5):523-527. 被引量:118
  • 3Efe M O, Kaynak O. A Novel Optimization Procedure for Training of Fuzzy Inference Systems by Combining Variable Structure Systems Technique and Levenberg-Marquardt Algorithm. Fuzzy Sets and Systems, 2001, 122:153-165

二级参考文献1

  • 1王春行.液压伺服系统[M].北京:机械工业出版社,1991..

共引文献150

同被引文献31

  • 1张波.人工神经网络在流量预测中的运用[J].水道港口,2005,26(2):80-82. 被引量:1
  • 2贾丽会,张修如.BP算法分析与改进[J].计算机技术与发展,2006,16(10):101-103. 被引量:47
  • 3BURGES JC. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998,2(2) : 121 - 167.
  • 4PLATT JC. Sequential minimal optimization: a fast algorithm for training support vector machines[ A]. Advances in Kernel Methods - Support Vector Learning[C]. MIT Press, 1999.185 -208.
  • 5VAPNIK V. Statistical Learning Theory[ M]. John Wiley and Sons Inc, 1998.
  • 6[美]PANDIT SM,吴宪民.时间序列及系统分析与应用[M].李昌琪,荣国俊,译.北京:机械工业出版社,1988.
  • 7Sikka V, F/irber F, Lehner W, et al. Efficient transaction pro- cessing in SAP HANA database: the end of a column store myth [C] // Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data. ACM, 2012:7B1 742.
  • 8R6sch P,Dannecker L,Fgrber F,et al. A storage advisor for hy- brid store databases[J]. Proceedings of the VLDB Endowment, 2012,5(12) : 1748-1758 F.
  • 9firber F, Cha S K, Primseh J, et al. SAP HANA database: data management for modern business applications [J]. SIGMOD Re- cord,2011,40(4) 45 51.
  • 10彭岩,王万森,王旭仁,涂序彦.基于机器学习的风险预测方法研究[J].计算机科学,2009,36(4):205-207. 被引量:10

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部