期刊文献+

关于树的Large Laplace谱扰动(英文)

On Laplacian Spectral Perturbations of Trees
下载PDF
导出
摘要 讨论树在添加一条边后其Laplace谱发生的扰动,刻画了满足如下条件的匹配数为2或3的树添加一条边后所有变化的特征值以整数增加.对于每个μ≥2(或n≥5),构造了一个匹配数为μ(或顶点数为n)的树,以满足上述性质. All trees with matching number 2 or 3,for which all changed Laplacian eignvalues moved up by integers after adding an edge,are characterized.For each μ≥2 (or n≥5),a tree with matching number μ (or vertex number n) which holds the above property after adding an edge is constructed.
作者 范益政
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2004年第6期647-654,共8页 JUSTC
基金 NSFofDepartmentofEducationofAnhuiProvinceofChina(2004kj027) andtheprojectofresearchsupportforYouthTeachersofUniversitiesofAnhuiProvinceofChina(2003jql01)andtheprojectofAnhuiUniversityforTalentsGruopConstruction
关键词 LAPLACE特征值 谱整性变化 匹配数 tree Laplacian eigenvalue spectral integral variation matching number
  • 相关文献

参考文献1

二级参考文献9

  • 1[1]Fiedler M. Algebraic connectivity of graphs[J]. Czechoslovak Mathematical Journal, 1973, 23: 298~305.
  • 2[2]Merris R. Laplacian matrices of graphs: a survey[J]. Linear Algebra A ppl., 1998, 197/198: 143~176.
  • 3[3]Fiedler M. A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory[J]. Czechoslovak Mathematical Journal, 1975, 25: 607~618.
  • 4[4]Grone R, Merris R. Algebraic connectivity of trees[J]. Czechosl ovak Mathematical Journal, 1987, 37: 660~670.
  • 5[5]Merris R. Characteristic vertices of trees[J]. Linear and Multilinear Algebra, 1987, 22: 115~131.
  • 6[6]Kirkland S. A bound on algebraic connectivity of a graph in terms of th e number of cutpoints[J]. Linear and Multilinear Algebra, 2000, 47: 93~103.
  • 7[7]Johnson C R, Horn R A. Matrix analysis[M]. New York: Academic Press, 1985, 179.
  • 8[8]Merris R. Laplacian graph eigenvectors[J]. Linear Algebra Appl.,1998, 278: 221~236.
  • 9[9]Kirkland S, Fallat S. Perron components and algebraic connectivity for weighted graphs[J]. Linear and Multilinear Algebra, 1998, 44: 131~138.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部