期刊文献+

基于Bayes网络的航空图象理解模型 被引量:3

An Aerial Image Understanding Model Based on Bayesian Networks
下载PDF
导出
摘要 提出一种基于Bayes网络的图象理解模型,用于检测与描述城市航空图象中的停车场、空地、房屋等二维和三维目标.模型首先使用一种基于感知组织的算法生成焦点区域,然后使用Bayes网络建立焦点区域的图象特征与目标之间的(不确定性)联系,由Bayes网络推理机制完成对焦点区域的识别.对于屋顶区域,模型使用一种基于DEM(digitalelevationmap)方向直方图的匹配算法进行模板匹配,生成房屋的三维几何模型描述.模型中所有Bayes网络组成层次结构,可以方便地增加被识别目标的种类;图象特征与提取图象特性的算法之间由一种称为证据源的数据结构相连接,可以方便地扩充图象特征的提取算法.由此实现了模型的易扩展性.实验结果表明了本文模型的有效性. A Bayesian network-based image understanding model is presented,which can be used in detection and describing two and three dimensional objects such as parks,grounds and buildings in aerial image of cities.The focused region is first extracted in the model by a perceptual-organization-based algorithm.Then the uncertainty relationships between image features of the focused region and objects are represented in Bayesian networks.Finally,the focused regions are recognized through the inference engine of the Bayesian networks.As to the roof of the building,a DEM based direction histogram is used as the matching algorithm to template matching before the generation of description of the three dimensional geometric model.All Bayesian networks in the model are organized in a hierarchy structure,which can increase with ease the variety of objects to be recognized.The image features and their extraction algorithms are connected by a data structure called evidence source,which expands the extraction algorithms easily,thus increasing the extendability image-understanding model .The experimental results have shown the validity of this model.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2004年第6期745-756,共12页 JUSTC
基金 国家自然科学基金资助项目(60175011 60375011) 安徽省自然科学基金(03042207)资助项目.
关键词 BAYES网络 图象理解 证据源 DEM方向直方图 bayesian networks image understanding evidence source DEM direction histogram
  • 相关文献

参考文献21

  • 1Crevier D,Lepage R. Knowledge-based image understanding systems: A survey[J]. Computer Vision and Image Understanding,1997,67(2): 161-185.
  • 2Pearl J. Probabilistic Reasoning in Intelligence systems: Networks of Plausible Inference [ M]. San Mateo, California: Morgan Kaufmann, 1988.
  • 3Binford T O,Levitt T S,et al. Bayesian inference in model-based machine vision[A]. Pearl J. Proceeding of Uncertainty in Artificial Intelligence[C]. North-Holland : Elsevier, 1989,371-388.
  • 4Riemy R,Brown C. Task-oriented vision with multiple bayes nets. in: Blake A. Active Vision[M]. The MIT press, 1992,256-283.
  • 5HUANG T,Koller D,et al. Automatic symbolic traffic scene analysis using belief networks[A]. S. Russel. Proc. of the 12th National Conference on Artificial Intelligence[C].Seattle, WA: Elsevier, 1994,966-972.
  • 6Buxton H,GONG S. Visual surveillance in a dynamic and uncertain world [J]. Artificial Intelligence, 1995,78: 431-459.
  • 7Dockstader S L,Tekalp A M. Tracking multiple objects in the presence of articulated and occluded motion[A]. P. Eren. Proc. of the Workshop on Human Motion[C]. Austin:IEEE Computer Society,2000,88-95.
  • 8Kumar V P,Desai U B. Image interpretation using bayesian networks[J]. IEEE Trans. On Pattern Analysis and Machine Intelligence,1996,18(1)74-77.
  • 9FENG Xiao-juan,et al. Combining belief networks and neural networks for scene segmentation[J]. IEEE Trans. On Pattern Analysis and Machine Intelligence, 2002, 24 (4): 467-483.
  • 10Marengoni M, A Hanson,et al. Decision making and uncertainty management in a 3D reconstruction system[J]. IEEE Trans. On Pattern Analysis and Machine Intelligence,2003,25 (7): 852-858.

二级参考文献2

共引文献3

同被引文献66

  • 1汪行,陈学佺,金敏.线段提取在高分辨率遥感图像建筑物识别中的应用[J].计算机辅助设计与图形学学报,2005,17(5):928-934. 被引量:11
  • 2邵晓芳,姚伟,孙即祥,季虎.基于视觉竞争合作机制的主观轮廓提取[J].中国图象图形学报,2005,10(8):1024-1028. 被引量:5
  • 3阎平,江万寿.DSM数据中多层次、多直角房屋的三维重建[J].武汉大学学报(信息科学版),2006,31(6):492-495. 被引量:4
  • 4Mehrotra R,Nichani S.Corner detection[J].Pattern Recognition,1990,23(11):1223-1233.
  • 5Wang H,Brady M.Realtime comer detection algorithm for motion estimation[J].Image and Vision Computing,1995,13(9):695-703.
  • 6Sheu H T,Hu W C.A rotationally invariant two phase scheme for corner detection[J].Pattern Recognion,1996,29(5):819-828.
  • 7Smith $ M,Brady J M.SUSAN-a new approach to low levelimage processing[J].Intl.J.of Computer Vision,1997,23(1):45-78.
  • 8Laganiere R.A morphological operator for corner detection[J].Pattern Recognition,1998,31(11):1643-1652.
  • 9Young N,Evans A N.Psycho visually tuned attribute operators for pre-processing digital video[J].IEEE Proc.Vision,Imageand Signal Processing,2003,150(4):277-286.
  • 10Gatica-Perez D,Gu C,Sun M T,et al.Extensive partition operators,gray-level connected operators,and region merging/clsssification segmentation algorithms:theoretical links[J].IEEE Transation.Image Processing,September,2001,10 (9):1332-1345.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部