摘要
注塑机料筒温度是一类多变量、强耦合、大惯性控制对象,本文根据注塑机料筒温度控制的要求,利用PID神经网络构成多变量解耦控制系统。文中分析了注塑机温度控制的特点,给出了网络的结构和算法,对多段温度系统进行了实时仿真,显示了PID神经网络对注塑机料筒温度控制的良好解耦性能和自学习控制特性。
The paper shows PID neural network control system for temperature of plastic injection machine. The multivariable strong-coupled properties of the system are analyzed and the structure and the algorithm of the PID neural networks are given. The simulation results for the control of a three stage heater in a plastic injection machine are shown. It is proved that the PID neural network has perfect decouple and self-learning control performance for the multivariable temperature system.
出处
《计算技术与自动化》
2004年第4期55-57,共3页
Computing Technology and Automation