期刊文献+

四种学习算法稳定之间的关系 被引量:1

THE RELATION OF FOUR KINDS OF LEARNING ALGORITHMIC STABILITY
下载PDF
导出
摘要 为研究机器学习的推广误差 ,提出了变一误差估计条件下一种新的学习算法稳定 逐点假设稳定 ,并讨论了逐点假设稳定、CV稳定、重叠稳定以及弱假设稳定四种学习算法稳定之间的关系 ,得出了逐点假设稳定是这四种学习算法稳定中最弱的学习算法稳定的结论。 A new notion of algorithmic stability under the change one error estimates,Pointwise Hypothesis Stability was introduced to study the Generalization error of machine Learning,and the relationships of four kinds of learning algorithmic stabilities was also discussed in the paper.The four kinds of learning algorithmic stabilities are Pointwise Hypothesis Stability,Cross Validation Stability,Overlap Stability,Weakly Hypothesis Stability.From these relationships,we can find that Pointwise Hypothesis Stability is the most weakly learning algorithmic stability of the four learning algorithmic stabilities.
出处 《计算机应用与软件》 CSCD 北大核心 2005年第1期30-31,111,共3页 Computer Applications and Software
基金 湖北省自然科学基金资助项目 (99J1 69)。
关键词 学习算法 机器学习 误差估计 假设 CV 推广 结论 重叠 条件 Learning algorithms Algorithmic stability Generalization error
  • 相关文献

参考文献14

  • 1V Valmlk and A. Chetvonenkis, On the uniform convergence of relative frequencies of events to their pwlmbilites[J]. Theory of probability and its Applications, 16(2) :264 - 280,1971.
  • 2V Vapnik, Statistical Leaming Theory [ M ].John Wiley & Sons Tnc, New York, 1998. A Wiley-lnterscience Publication.
  • 3L Derroye and T Wagner, Distribution-free performance bounds for potential function rules[J]. IEEE Trans Inform Theory,25(5) :601 - 604,1979.
  • 4O Bousquet and A Elisseeff, Aalgorithmie stability and generalization performance. In Advances in Neural Information Processing Systems. 13: Proc.NIPS'2000,2001.
  • 5M Kearns and D. Ron, Algorithmic saability and sanity check bounds for leaveon-out cross-validation [ J ]. Neural Computation . 11 : 1427 - 1453,1999.
  • 6S Kutin and P Niyogi, Almost-everywhere algorithmic stability and generalization error. Technical Report TR-2002-03, Department of Computer Science,The University of Chicago,2002.
  • 7S Kutin and P Niyogi ,The interaction of stability and weakness in adabost.Technical Report TR-2001-30, Department of Computer Science, The University of Chicago,2001.
  • 8V Vapnik and A Chetvonenkis, On the uniform convergence if relative frequencies of events to their probabilites[J]. Theory of Probability and its Applications, 16(2) :264 - 280,1971.
  • 9V Vapnik, Statistical Learning Theory [ M ], John Wiley & Sons Tnc, NewYork, 1998. A Wiley-Interscience Publication.
  • 10L Derroye and T Wagner, Distribution-free performance bounds for potential function rules[J]. IEEE Trans Inform.Theory,25(5) :601 - 604,1979.

同被引文献5

  • 1Derroye L, Wagner T.Distribution-free performance bounds for potential function rules[J].IEEE Trans Inform Theory, 1979,25 (5) :601-604.
  • 2Kutin S, Niyogi P.Almost-everywhere algorithmic stability and generalization error, Technical Report Tr-2002-03[R].the University of Chicago, 2002 : 1-43.
  • 3Kalousis A,Prados J,Hilario M.Stability of feature selection algorithms : A study on high-dimensional spaces[J].Knowledge and Information Systems, 2007,12 ( 1 ) : 95-116.
  • 4Kcams M, Ron D.Algorithmic stability and sanity check bounds for leave-one-out eross-validation[J].Neural Computation,1999, 11(6) : 1427-1453.
  • 5刘尧猛,马永军,杨美艳.改进型Elman神经网络发酵过程建模研究[J].计算机工程与应用,2009,45(32):240-243. 被引量:2

引证文献1

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部