期刊文献+

大战略集博弈的适应性均衡及其求法 被引量:3

The Adaptive Equilibrium and Its Solution to Large-strategy-Sets Games
下载PDF
导出
摘要 “象棋博弈之谜”表明 ,当一个博弈的战略集大到超过人的有限理性、有限计算能力和有限时间时 ,这个博弈呈现复杂的特性 ,因此 ,按照“最优战略选择”的常规办法无法求出其均衡解 ,必须借助复杂性理论的办法。一种可行的办法是借助复杂适应系统理论 (CAS) ,通过定义生成战略的规则集并对其进行信用分派 ,并以此对大战略集中的战略进行信用评估 ,将大战略集转化为一个小战略集———高信用战略子集 ,从而通过按常规方法求出小战略集博弈的均衡解来求出大战略集博弈的适应性均衡解。这种适应性均衡是一种魏里希型联合自我支持的 ,可能不是最优但是在复杂性下可行的稳定均衡。 The riddles of chess game indicate, according to the normal solution of Nash equilibrium, a game has not a solution to its equilibrium that one or more of its strategy sets are enough large to bounded rationality, capability of calculating and time of human as it appears complex characteristic. In virtue of complex adaptive system theory (CAS), defining the rules set that builds strategies and making credit assignment, evaluating the credit strength of the strategies in the large-strategy-set, transforming from large-strategy-sets to small-strategy-sets, namely strategy subsets of high credit strength, that is a viable way to transform solution from the adaptive equilibrium on large-strategy-sets game to of the equilibrium on small-strategy-sets game. the adaptive equilibrium is a sort of equilibrium based on complexity, that is Weirich-type united self-sustained, feasible and stable but possible dominant.
作者 梁志峰
机构地区 中南大学商学院
出处 《湖南科技大学学报(社会科学版)》 2004年第6期82-86,共5页 Journal of Hunan University of Science and Technology(Social Science Edition)
关键词 博弈 均衡解 战略选择 信用评估 博弃 有限理性 复杂适应系统理论 象棋 办法 计算能力 game theory Nash equilibrium adaptive equilibrium complexity Complex Adaptive Systems
  • 相关文献

参考文献3

  • 1约翰·H·霍兰 周小牧 韩晖译.隐秩序--适应性造就复杂性[M].上海:上海科技教育出版社,2000..
  • 2青木昌彦.比较制度分析.上海:上海远东出版社,2001.
  • 3保罗·魏里希.均衡与理性[M].北京:经济科学出版社,2000,9..

共引文献48

同被引文献15

  • 1徐心和,王骄.中国象棋计算机博弈关键技术分析[J].小型微型计算机系统,2006,27(6):961-969. 被引量:61
  • 2马丁·J·奥斯本 阿里尔·鲁宾斯坦.博弈论教程[M].北京:中国社会科学院出版社,2000..
  • 3蔡文.从物元分析到可拓学[M].北京:科学技术文献出版社,1995..
  • 4蔡文.物元模型及其应用[M].北京:科学技术文献出版社,1998.21-205.
  • 5保罗·魏里希.均衡与理性[M].北京:经济科学出版社,2000.
  • 6Nash J. Equilibrium points in n-person games[J]. Proceedings National Academy of Sciences,1950,36:48~49.
  • 7Debreu D.A social equilibrium existence theorem[J]. Proceedings of the National Academy of Sciences,1952,38:886~893.
  • 8Glicksberg I L. A further generalization of Katutani fixed point theorem with application to Nash equilibrium points[J]. Proceedings of the Ntional Academy of Sciences,1952,38:170~174.
  • 9Liang Z F.Extension strategic game:concept,trans- formability and existence of Nash equilibrium[A]. Proceedings of 2002 international conference on management science & engineering[C]. Harbin:Harbin Institute of Technology Press,2002:588~593.
  • 10Gibbons R.A primer in game theory[M].Princeton:Princeton University Press,1992.

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部